3 research outputs found

    Effect of Quaternary Ammonium Salts and 1,2,4-Triazole Derivatives on Hydrogen Absorption by Mild Steel in Hydrochloric Acid Solution

    No full text
    The treatment of low-carbon steel items with hydrochloric acid solutions is used in many industrial technologies. This process is accompanied not only by metal corrosion losses, but also by hydrogen absorption by the metal. In this study, the kinetics of hydrogen cathodic reduction on low-carbon steel in 2 M HCl containing corrosion inhibitors, namely, quaternary ammonium salts and a 3-substituted 1,2,4-triazole, have been studied. Adsorption isotherms of corrosion inhibitors on cathodically polarized steel surface have been obtained. XPS data provide valuable information on the composition and structure of protective layers formed on steel in HCl solutions containing inhibitors. The main rate constants of the stages of gaseous hydrogen evolution and incorporation of hydrogen atoms into the metal have been determined. The addition of quaternary ammonium salts or 3-substituted 1,2,4-triazole inhibits the cathodic reduction of hydrogen and its penetration into steel in the HCl solution. 3-substituted 1,2,4-triazole is the most efficient inhibitor of hydrogen absorption. The inhibitory effect of this compound is caused by a decrease in the ratio of the hydrogen concentration in the metal phase to the degree of surface coverage with hydrogen. The maximum decrease in hydrogen concentration in the metal bulk in the presence of the 3-substituted 1,2,4-triazole is 8.2-fold, which determines the preservation of the plastic properties of steel as it corrodes in HCl solutions. The high efficiency of the 3-substituted 1,2,4-triazole as an inhibitor of hydrogen cathodic reduction and absorption results from strong (chemical) adsorption of this compound on the steel surface and the formation of a polymolecular protective layer

    Mutual Effect of Components of Protective Films Applied on Copper and Brass from Octadecylamine and 1,2,3-Benzotriazole Vapors

    No full text
    It has been shown by a set of corrosion, electrochemical and physical methods that a chamber corrosion inhibitor that consists of a mixture of octadecylamine (ODA) and benzotriazole (BTA) efficiently protects copper and brass from atmospheric corrosion and can be used for the temporary protection of metal items. The optimum temperatures of treatment with the ODA + BTA mixed inhibitor is 120 °C for brass and 100 °C for copper. One-hour treatment in ODA + BTA vapors at these temperatures results in the formation of nanosized adsorption films on the surface of these metals. These films stabilize the passive state and provide efficient temporary protection of metal items. The ODA + BTA inhibitor is superior to its components in terms of protective aftereffect. Our analysis of the mutual effect of BTA and ODA indicated that they show an antagonism of protective action on copper, but there is also a synergistic enhancement in the case of brass. Electrochemical impedance spectroscopy studies demonstrate that the inhibitors in question mainly act by using a blocking mechanism on copper and brass. Chamber treatment of the metals studied in vapors of the ODA + BTA mixture resulted in a noticeable hydrophobization of the copper surface and an insignificant effect on the brass surface. Chamber treatment of copper samples with artificially created polymodal roughness made it possible to obtain a superhydrophobic surface

    Structuring of Surface Films Formed on Magnesium in Hot Chlorobenzotriazole Vapors

    No full text
    Chamberprotection of metals from atmospheric corrosion is a variety of vapor-phase inhibition. It is based on the effect of adsorption films formed in the vapors of low-volatile corrosion inhibitors at elevated temperatures. The paper analyzes the specific features of the chamber protection of a magnesium alloy with chlorobenzotriazole. It has been found that the protective properties of surface films formed in hot vapors of this compound increase upon exposure of the metal to air. The processes of structuring of protective films that occur in this case have been studied by a set of corrosion, electrochemical and physical methods. It has been shown that chamber treatment of the alloy is accompanied by chlorobenzotriazole adsorption and uniform thickening of the surface oxide-hydroxide layer. In this case, the corrosion processes slow down by a factor of up to 10. Prolonged exposure of the samples in air after the chamber treatment results in additional oxidation of magnesium and hydroxylation of the oxide. However, the oxide-hydroxide layer does not grow on the entire surface, but as separate islets. Such a change in the structure of the surface films results in an additional 10-fold increase in the corrosion resistance of the magnesium alloy
    corecore