3 research outputs found
In-Situ Heavy Oil Aquathermolysis in the Presence of Nanodispersed Catalysts Based on Transition Metals
The aquathermolysis process is widely considered to be one of the most promising approaches of in-situ upgrading of heavy oil. It is well known that introduction of metal ions speeds up the aquathermolysis reactions. There are several types of catalysts such as dispersed (heterogeneous), water-soluble and oil soluble catalysts, among which oil-soluble catalysts are attracting considerable interest in terms of efficiency and industrial scale implementation. However, the rock minerals of reservoir rocks behave like catalysts; their influence is small in contrast to the introduced metal ions. It is believed that catalytic aquathermolysis process initiates with the destruction of C-S bonds, which are very heat-sensitive and behave like a trigger for the following reactions such as ring opening, hydrogenation, reforming, water–gas shift and desulfurization reactions. Hence, the asphaltenes are hydrocracked and the viscosity of heavy oil is reduced significantly. Application of different hydrogen donors in combination with catalysts (catalytic complexes) provides a synergetic effect on viscosity reduction. The use of catalytic complexes in pilot and field tests showed the heavy oil viscosity reduction, increase in the content of light hydrocarbons and decrease in heavy fractions, as well as sulfur content. Hence, the catalytic aquathermolysis process as a distinct process can be applied as a successful method to enhance oil recovery. The objective of this study is to review all previously published lab scale and pilot experimental data, various reaction schemes and field observations on the in-situ catalytic aquathermolysis process
Catalytic Aquathermolysis of Boca de Jaruco Heavy Oil with Nickel-Based Oil-Soluble Catalyst
This paper investigates aquathermolysis of heavy oil in carbonate reservoir rocks from Boca de Jaruco, which is developed by the cyclic steam stimulation method. The nickel-based catalyst precursor was introduced in order to intensify the conversion processes of heavy oil components. The active form of such catalysts—nickel sulfides—are achieved after steam treatment of crude oil at reservoir conditions. The experiments were carried out on a rock sample extracted from the depth of 1900 m. Changes in composition and structure of heavy oil after the conversion were identified using SARA-analysis, Gas Chromatography-Mass Spectroscopy of saturated fractions, FTIR spectroscopy of saturated fractions, and MALDI of resins. It is revealed that catalyst particles provide a reduction in the content of resins and asphaltenes due to the destruction of carbon-heteroatom bonds. Moreover, the destruction of C=Carom. bonds and interactions with aromatic rings are heightened. In contrast, the results of experiments in the absence of catalysts exposed polymerization and condensation of aromatic rings. The most remarkable result to emerge from the thermo-catalytic influence is the irreversible viscosity reduction of produced crude oil enhancing the oil recovery factor. Moreover, the introduction of catalysts increases the gas factor due to additional gas generation as a result of aquathermolysis reactions. The yield of methane gas is significantly high in the experimental runs with oil-saturated rocks rather than crude oil experiments. The gas factor reaches 45 m3/ton