776 research outputs found

    Numerical optimization for Artificial Retina Algorithm

    Full text link
    High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades

    Event Index - an LHCb Event Search System

    Full text link
    During LHC Run 1, the LHCb experiment recorded around 101110^{11} collision events. This paper describes Event Index - an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene optimized for read-only indexes distributed over independent shards on independent nodes.Comment: Report for the proceedings of the CHEP-2015 conferenc

    Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation

    Full text link
    The goal of the change-point detection is to discover changes of time series distribution. One of the state of the art approaches of the change-point detection are based on direct density ratio estimation. In this work we show how existing algorithms can be generalized using various binary classification and regression models. In particular, we show that the Gradient Boosting over Decision Trees and Neural Networks can be used for this purpose. The algorithms are tested on several synthetic and real-world datasets. The results show that the proposed methods outperform classical RuLSIF algorithm. Discussion of cases where the proposed algorithms have advantages over existing methods are also provided

    Cherenkov Detectors Fast Simulation Using Neural Networks

    Full text link
    We propose a way to simulate Cherenkov detector response using a generative adversarial neural network to bypass low-level details. This network is trained to reproduce high level features of the simulated detector events based on input observables of incident particles. This allows the dramatic increase of simulation speed. We demonstrate that this approach provides simulation precision which is consistent with the baseline and discuss possible implications of these results.Comment: In proceedings of 10th International Workshop on Ring Imaging Cherenkov Detector
    • …
    corecore