9 research outputs found
Spin-Orbitronics a Novel Trend in Spin Oriented Electronics
Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices.Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices
Anomalous polarization conversion in arrays of ultrathin ferromagnetic nanowires
We study optical properties of arrays of ultrathin nanowires by means of the
Brillouin scattering of light on magnons. We employ the Stokes/anti-Stokes
scattering asymmetry to probe the circular polarization of a local electric
field induced inside nanowires by linearly polarized light waves. We observe
the anomalous polarization conversion of the opposite sign than that in a bulk
medium or thick nanowires with a great enhancement of the degree of circular
polarization attributed to an unconventional refraction in the nanowire medium.Comment: 5 pages, 4 figure
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Spin-Orbitronics a Novel Trend in Spin Oriented Electronics
Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices
Anomalous polarization conversion in arrays of ultrathin ferromagnetic nanowires
We study the optical properties of arrays of ultrathin cobalt nanowires by means of the Brillouin scattering
of light on magnons. We employ the Stokes/anti-Stokes scattering asymmetry to probe the circular polarization
of a local electric field induced inside nanowires by linearly polarized light waves. We observe the anomalous
polarization conversion of the opposite sign than that in a bulk medium or thick nanowires with a great enhance-
ment of the degree of circular polarization attributed to the unconventional refraction in a nanowire medium. A
rigorous simulation of the electric field polarization as a function of the wire diameter and spacing reveals the
reversed polarization for a thin sparse wire array, in full quantitative agreement with experimental results
Influence of tip modulation on image formation in scanning near-field optical microscopy
International audienceModulation of the probe height in a scanning near-field optical microscope (SNOM) is a technique that is commonly used for both distance control and separation of the near-field signal from a background. Detection of higher harmonic modulated signals has also been used to obtain an improvement in resolution, the elimination of background, or artifacts in the signal. This article presents a theoretical model for the effects induced in SNOM images by modulation of the probe. It is shown that probe modulation introduces a spatial filter into the image, generally suppressing propagating field components and enhancing the strength of evanescent field components. A simple example of detection of a single evanescent field above a prism is studied in some detail, and a complicated dependence on modulation parameters and waveform is shown. Some aspects of the application of this theory in a general experimental situation are discussed. Simulated images are displayed to explicitly show the effects of varying modulation amplitude with first and second harmonic detection. Finally, we discuss the suppression of background artifacts due to propagating fields through the use of higher harmonic detection