31 research outputs found

    Optimal fast single pulse readout of qubits

    Full text link
    The computer simulations of the process of single pulse readout from the flux-biased phase qubit is performed in the frame of one-dimensional Schroedinger equation. It has been demonstrated that the readout error can be minimized by choosing the optimal pulse duration and the depth of a potential well, leading to the fidelity of 0.94 for 2ns and 0.965 for 12ns sinusoidal pulses.Comment: 4 pages, 6 figure

    Fine tuning of phase qubit parameters for optimization of fast single-pulse readout

    Full text link
    We analyze a two-level quantum system, describing the phase qubit, during a single-pulse readout process by a numerical solution of the time-dependent Schroedinger equation. It has been demonstrated that the readout error has a minimum for certain values of the system`s basic parameters. In particular, the optimization of the qubit capacitance and the readout pulse shape leads to significant reduction of the readout error. It is shown that in an ideal case the fidelity can be increased to almost 97% for 2 ns pulse duration and to 96% for 1 ns pulse duration.Comment: 4 pages, 5 figure

    Lifetime of the superconductive state in short and long Josephson junctions

    Full text link
    We study the transient statistical properties of short and long Josephson junctions under the influence of thermal and correlated fluctuations. In particular, we investigate the lifetime of the superconductive metastable state finding the presence of noise induced phenomena. For short Josephson junctions we investigate the lifetime as a function both of the frequency of the current driving signal and the noise intensity and we find how these noise-induced effects are modified by the presence of a correlated noise source. For long Josephson junctions we integrate numerically the sine-Gordon equation calculating the lifetime as a function of the length of the junction both for inhomogeneous and homogeneous bias current distributions. We obtain a nonmonotonic behavior of the lifetime as a function of the frequency of the current driving signal and the correlation time of the noise. Moreover we find two maxima in the nonmonotonic behaviour of the mean escape time as a function of the correlated noise intensity.Comment: 12 pages, 9 figure

    Suppression of timing errors in short overdamped Josephson junctions

    Full text link
    The influence of fluctuations and periodical driving on temporal characteristics of short overdamped Josephson junction is analyzed. We obtain the standard deviation of the switching time in the presence of a dichotomous driving force for arbitrary noise intensity and in the frequency range of practical interest. For sinusoidal driving the resonant activation effect has been observed. The mean switching time and its standard deviation have a minimum as a function of driving frequency. As a consequence the optimization of the system for fast operation will simultaneously lead to minimization of timing errors.Comment: 4 pages, 4 figures, in press in Physical Review Letter
    corecore