48 research outputs found

    Intra-Individual Behavioural Variability:A Trait under Genetic Control

    Get PDF
    When individuals are measured more than once in the same context they do not behave in exactly the same way each time. The degree of predictability differs between individuals, with some individuals showing low levels of variation around their behavioural mean while others show high levels of variation. This intra-individual variability in behaviour has received much less attention than between-individual variability in behaviour, and very little is known about the underlying mechanisms that affect this potentially large but understudied component of behavioural variation. In this study, we combine standardized behavioural tests in a chicken intercross to estimate intra-individual behavioural variability with a large-scale genomics analysis to identify genes affecting intra-individual behavioural variability in an avian population. We used a variety of different anxiety-related behavioural phenotypes for this purpose. Our study shows that intra-individual variability in behaviour has a direct genetic basis that is largely unique compared to the genetic architecture for the standard behavioural measures they are based on (at least in the detected quantitative trait locus). We identify six suggestive candidate genes that may underpin differences in intra-individual behavioural variability, with several of these candidates having previously been linked to behaviour and mental health. These findings demonstrate that intra-individual variability in behaviour appears to be a heritable trait in and of itself on which evolution can act

    Genetical Genomics of Tonic Immobility in the Chicken

    Get PDF
    Identifying the molecular mechanisms of animal behaviour is an enduring goal for researchers. Gaining insight into these mechanisms enables us to gain a greater understanding of behaviour and their genetic control. In this paper, we perform Quantitative Trait Loci (QTL) mapping of tonic immobility behaviour in an advanced intercross line between wild and domestic chickens. Genes located within the QTL interval were further investigated using global expression QTL (eQTL) mapping from hypothalamus tissue, as well as causality analysis. This identified five candidate genes, with the genes PRDX4 and ACOT9 emerging as the best supported candidates. In addition, we also investigated the connection between tonic immobility, meat pH and struggling behaviour, as the two candidate genes PRDX4 and ACOT9 have previously been implicated in controlling muscle pH at slaughter. We did not find any phenotypic correlations between tonic immobility, struggling behaviour and muscle pH in a smaller additional cohort, despite these behaviours being repeatable within-test

    Genetical genomics of growth in a chicken model

    Get PDF
    Background: The genetics underlying body mass and growth are key to understanding a wide range of topics in biology, both evolutionary and developmental. Body mass and growth traits are affected by many genetic variants of small effect. This complicates genetic mapping of growth and body mass. Experimental intercrosses between individuals from divergent populations allows us to map naturally occurring genetic variants for selected traits, such as body mass by linkage mapping. By simultaneously measuring traits and intermediary molecular phenotypes, such as gene expression, one can use integrative genomics to search for potential causative genes. Results: In this study, we use linkage mapping approach to map growth traits (N = 471) and liver gene expression (N = 130) in an advanced intercross of wild Red Junglefowl and domestic White Leghorn layer chickens. We find 16 loci for growth traits, and 1463 loci for liver gene expression, as measured by microarrays. Of these, the genes TRAK1, OSBPL8, YEATS4, CEP55, and PIP4K2B are identified as strong candidates for growth loci in the chicken. We also show a high degree of sex-specific gene-regulation, with almost every gene expression locus exhibiting sex-interactions. Finally, several trans-regulatory hotspots were found, one of which coincides with a major growth locus. Conclusions: These findings not only serve to identify several strong candidates affecting growth, but also show how sex-specificity and local gene-regulation affect growth regulation in the chicken.Funding Agencies|Carl Tryggers Stiftelse; Swedish Research Council (VR); Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS); Linkoping University Neuro-network; European Research Council [GENEWELL 322206]</p

    Expression pattern of GPI-anchored non-specific lipid transfer proteins in Physcomitrella patens

    Full text link
    During the water-to-land transition, that occurred approximately 450 MYA, novel habitats wererevealed to the emerging plants. This terrestrial habitat was a harsh environment compared to theaquatic, with shifting substrate content, irregular supply of water, damaging UV-radiation andrapid fluctuating temperatures. Non-specific lipid transfer proteins (nsLTP) are today only foundin the land living plants and not in the green algae. This suggests that these genes might haveevolved to help the plants cope with the stressful conditions. In this study the expression patternhas been analysed of the nsLTPs in the moss Physcomitrella patens during the possible conditionsthat raised during the water-to-land transition. The moss was exposed to salt, UV-B, drought, copper, cold and osmotic stress. Quantitative real-time PCR was used to analyse the transcription levels. I found that six genes were upregulated during either cold, dehydration or UV-B stress. This suggest that these genes are involved in the plant defense against these abiotic stress

    Expression pattern of GPI-anchored non-specific lipid transfer proteins in Physcomitrella patens

    Full text link
    During the water-to-land transition, that occurred approximately 450 MYA, novel habitats wererevealed to the emerging plants. This terrestrial habitat was a harsh environment compared to theaquatic, with shifting substrate content, irregular supply of water, damaging UV-radiation andrapid fluctuating temperatures. Non-specific lipid transfer proteins (nsLTP) are today only foundin the land living plants and not in the green algae. This suggests that these genes might haveevolved to help the plants cope with the stressful conditions. In this study the expression patternhas been analysed of the nsLTPs in the moss Physcomitrella patens during the possible conditionsthat raised during the water-to-land transition. The moss was exposed to salt, UV-B, drought, copper, cold and osmotic stress. Quantitative real-time PCR was used to analyse the transcription levels. I found that six genes were upregulated during either cold, dehydration or UV-B stress. This suggest that these genes are involved in the plant defense against these abiotic stress

    Quantitative genetics of gene expression and methylation in the chicken

    Full text link
    In quantitative genetics the relationship between genetic and phenotypic variation is investigated. The identification of these variants can bring improvements to selective breeding, allow for transgenic techniques to be applied in agricultural settings and assess the risk of polygenic diseases. To locate these variants, a linkage-­‐based quantitative trait locus (QTL) approach can be applied. In this thesis, a chicken intercross population between wild and domestic birds have been used for QTL mapping of phenotypes such as comb, body and brain size, bone density and anxiety behaviour. Gene expression QTL (eQTL) mapping was also done for tissues such as comb base, medullar bone, liver and brain. By overlapping eQTL and QTL, regions were identified associated with both the gene expression levels and the phenotypes simultaneously. In this way, a number of candidate genes, underlying variation in the above-­‐mentioned phenotypes, were identified. Additionally, DNA methylation QTL (mQTL) mapping was done in the brain and the methylation landscape was assessed which indicated a decrease in methylation in the domestic breed. A small number of regions were identified which affected DNA methylation levels throughout the whole genome, so-­‐called trans hotspots. Finally, DNA methylation levels were correlated with eQTL to assess the degree to which gene expression is affected by methylation, and with gene expression in general to assess the relationship between the transcriptome and methylome. Taken together, these studies link the differences observed in various phenotypes between two populations of chicken to genetic variants coupled with gene expression correlations suggesting candidate genes. DNA methylation levels were influential in regulating variation in gene expression, both positively and negatively, but gene expression was also influential in regulating the methylation level. Epi-­‐alleles were identified which indicated genetic variants regulating methylation levels and gene expression levels either as the causal variant or in close linkage

    Expression pattern of GPI-anchored non-specific lipid transfer proteins in Physcomitrella patens

    Full text link
    During the water-to-land transition, that occurred approximately 450 MYA, novel habitats wererevealed to the emerging plants. This terrestrial habitat was a harsh environment compared to theaquatic, with shifting substrate content, irregular supply of water, damaging UV-radiation andrapid fluctuating temperatures. Non-specific lipid transfer proteins (nsLTP) are today only foundin the land living plants and not in the green algae. This suggests that these genes might haveevolved to help the plants cope with the stressful conditions. In this study the expression patternhas been analysed of the nsLTPs in the moss Physcomitrella patens during the possible conditionsthat raised during the water-to-land transition. The moss was exposed to salt, UV-B, drought, copper, cold and osmotic stress. Quantitative real-time PCR was used to analyse the transcription levels. I found that six genes were upregulated during either cold, dehydration or UV-B stress. This suggest that these genes are involved in the plant defense against these abiotic stress

    The genetic regulation of size variation in the transcriptome of the cerebrum in the chicken and its role in domestication and brain size evolution

    Full text link
    BackgroundLarge difference in cerebrum size exist between avian species and populations of the same species and is believed to reflect differences in processing power, i.e. in the speed and efficiency of processing information in this brain region. During domestication chickens developed a larger cerebrum compared to their wild progenitor, the Red jungle fowl. The underlying mechanisms that control cerebrum size and the extent to which genetic regulation is similar across brain regions is not well understood. In this study, we combine measurement of cerebrum size with genome-wide genetical genomics analysis to identify the genetic architecture of the cerebrum, as well as compare the regulation of gene expression in this brain region with gene expression in other regions of the brain (the hypothalamus) and somatic tissue (liver).ResultsWe identify one candidate gene that putatively regulates cerebrum size (MTF2) as well as a large number of eQTL that regulate the transcriptome in cerebrum tissue, with the majority of these eQTL being trans-acting. The overall regulation of gene expression variation in the cerebrum was markedly different to the hypothalamus, with relatively few eQTL in common. In comparison, the cerebrum tissue shared more eQTL with a distant tissue (liver) than with a neighboring tissue (hypothalamus).ConclusionThe candidate gene for cerebrum size (MTF2) has previously been linked to brain development making it a good candidate for further investigation as a regulator of inter-population variation in cerebrum size. The lack of shared eQTL between the two brain regions implies that genetic regulation of gene expression appears to be relatively independent between the two brain regions and suggest that coevolution between these two brain regions might be more functionally driven than developmental. These findings have relevance for current brain size evolution theories.Funding Agencies|Swedish Research Council (VR)Swedish Research Council; Linkoping University Neuro-network; European Research CouncilEuropean Research Council (ERC) [FERALGEN 772874]; Linkoping University</p

    Genomic and gene expression associations to morphology of a sexual ornament in the chicken

    Full text link
    How sexual selection affects the genome ultimately relies on the strength and type of selection, and the genetic architecture of the involved traits. While associating genotype with phenotype often utilizes standard trait morphology, trait representations in morphospace using geometric morphometric approaches receive less focus in this regard. Here, we identify genetic associations to a sexual ornament, the comb, in the chicken system (Gallus gallus). Our approach combined genome-wide genotype and gene expression data (&amp;gt;30k genes) with different aspects of comb morphology in an advanced intercross line (F8) generated by crossing a wild-type Red Junglefowl with a domestic breed of chicken (White Leghorn). In total, 10 quantitative trait loci were found associated to various aspects of comb shape and size, while 1,184 expression QTL were found associated to gene expression patterns, among which 98 had overlapping confidence intervals with those of quantitative trait loci. Our results highlight both known genomic regions confirming previous records of a large effect quantitative trait loci associated to comb size, and novel quantitative trait loci associated to comb shape. Genes were considered candidates affecting comb morphology if they were found within both confidence intervals of the underlying quantitative trait loci and eQTL. Overlaps between quantitative trait loci and genome-wide selective sweeps identified in a previous study revealed that only loci associated to comb size may be experiencing on-going selection under domestication.Funding Agencies|Ministry of Education, Youth and Sports of the Czech Republic [CZ LM2018140]; National Genomics Infrastructure in Genomics Production Stockholm - Science for Life Laboratory; SNIC/Uppsala Multidisciplinary Centre for Advanced Computational Science</p

    Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans

    Full text link
    Background: Domestication of animals leads to large phenotypic alterations within a short evolutionary time-period. Such alterations are caused by genomic variations, yet the prevalence of modified traits is higher than expected if they were caused only by classical genetics and mutations. Epigenetic mechanisms may also be important in driving domesticated phenotypes such as behavior traits. Gene expression can be modulated epigenetically by mechanisms such as DNA methylation, resulting in modifications that are not only variable and susceptible to environmental stimuli, but also sometimes transgenerationally stable. To study such mechanisms in early domestication, we used as model two selected lines of red junglefowl (ancestors of modern chickens) that were bred for either high or low fear of humans over five generations, and investigated differences in hypothalamic DNA methylation between the two populations. Results: Twenty-two 1-kb windows were differentially methylated between the two selected lines at p amp;lt; 0.05 after false discovery rate correction. The annotated functions of the genes within these windows indicated epigenetic regulation of metabolic and signaling pathways, which agrees with the changes in gene expression that were previously reported for the same tissue and animals. Conclusions: Our results show that selection for an important domestication-related behavioral trait such as tameness can cause divergent epigenetic patterns within only five generations, and that these changes could have an important role in chicken domestication.Funding Agencies|research council Formas, Vetenskapsradet; European Research Council, ERC [322206 GENEWELL]</p
    corecore