3 research outputs found

    Specification of hemocyte subpopulations based on immune-related activities and the production of the agglutinin MkC1qDC in the bivalve Modiolus kurilensis

    No full text
    Bivalves, such as Modiolus are used as indicator organisms to monitor the state of the marine environment. Even though hemocytes are known to play a key role in the adaptive and protective mechanisms of bivalves, these cells are poorly studied in horse-mussel Modiolus kurilensis. In this paper, we present classification of horse-mussel hemocytes based on their immune functions, including the production of specific immune-related molecules, as well as their morphological composition after isolation by density gradient centrifugation. An effective fractionation protocol was adapted to separate four hemocyte subpopulations with distinct morphofunctional profiles. First subpopulation consisted of small under-differentiated hemoblasts (2.20 ± 0.85%) with a bromodeoxyuridine positive nucleus, and did not show any immune reactivity. Second was represented by agranulocytes (24.11 ± 2.40%), with evenly filled cytoplasm containing a well-developed protein-synthesizing apparatus, polysomes, smooth endoplasmic reticulum and mitochondria, and positively stained for myeloperoxidase, acidic proteins, glycogen and neutral polysaccharides. Third subpopulation consisted of eosinophilic granulocytes (62.64 ± 9.32%) that contained the largest number of lysosomes, peroxisomes and vesicles with contents of different density, and showed the highest phosphatase, reactive oxygen species (ROS) and phagocytic activities. Lastly, fourth group, basophilic granulocytes (14.21 ± 0.34%), are main producers of lectin-like protein MkC1qDC, recently discovered in M. kurilensis and characterized by pronounced antibacterial and anticancer activity. These cells characterized by intracytoplasmic of the MkC1qDC localization, forming granule-like bodies visualized with specific antibody. Both granulocytes and agranulocytes showed phagocytic activity and ROS production, and these reactions were more pronounced for eosinophilic granulocytes, suggesting that this group is the key element of the cell-mediated immune response of M. kurilensis. Our results support a concept of bivalve's hemocyte specification with distinct phenotypes

    Experimental Study and Thermodynamic Analysis of Carbon Dioxide Adsorption onto Activated Carbons Prepared from Biowaste Raw Materials

    No full text
    Nutshells are regarded as cost-effective and abundant raw materials for producing activated carbons (ACs) for CO2 capture, storage, and utilization. The effects of carbonization temperature and thermochemical KOH activation conditions on the porous structure as a BET surface, micropore volume, micropore width, and pore size distribution of ACs prepared from walnut (WNS) and hazelnut (HNS) shells were investigated. As a result, one-step carbonization at 900/800 °C and thermochemical KOH activation with a char/KOH mass ratio of 1:2/1:3 were found to be optimal for preparing ACs from WNS/HNS: WNS-AC-3 and HNS-AC-2, respectively. The textural properties of the WNS/HNS chars and ACs were characterized by low-temperature nitrogen vapor adsorption, XRD, and SEM methods. Dubinin’s theory of volume filling of micropores was used to evaluate the microporosity parameters and to calculate the CO2 adsorption equilibrium over the sub- and supercritical temperatures from 216.4 to 393 K at a pressure up to 10 MPa. The CO2 capture capacities of WNS- and HNS-derived adsorbents reached 5.9/4.1 and 5.4/3.9 mmol/g at 273/293 K under 0.1 MPa pressure, respectively. A discrepancy between the total and delivery volumetric adsorption capacities of the adsorbents was attributed to the strong binding of CO2 molecules with the adsorption sites, which were mainly narrow micropores with a high adsorption potential. The high initial differential heats of CO2 adsorption onto ACs of ~32 kJ/mol confirmed this proposal. The behaviors of thermodynamic functions (enthalpy and entropy) of the adsorption systems were attributed to changes in the state of adsorbed CO2 molecules determined by a balance between attractive and repulsive CO2–CO2 and CO2–AC interactions during the adsorption process. Thus, the chosen route for preparing ACs from the nutshells made it possible to prepare efficient carbon adsorbents with a relatively high CO2 adsorption performance due to a substantial volume of micropores with a size in the range of 0.6–0.7 nm

    Natural Gas Storage Filled with Peat-Derived Carbon Adsorbent: Influence of Nonisothermal Effects and Ethane Impurities on the Storage Cycle

    No full text
    Adsorbed natural gas (ANG) is a promising solution for improving the safety and storage capacity of low-pressure gas storage systems. The structural–energetic and adsorption properties of active carbon ACPK, synthesized from cheap peat raw materials, are presented. Calculations of the methane–ethane mixture adsorption on ACPK were performed using the experimental adsorption isotherms of pure components. It is shown that the accumulation of ethane can significantly increase the energy capacity of the ANG storage. Numerical molecular modeling of the methane–ethane mixture adsorption in slit-like model micropores has been carried out. The molecular effects associated with the displacement of ethane by methane molecules and the formation of a molecule layered structure are shown. The integral molecular adsorption isotherm of the mixture according to the molecular modeling adequately corresponds to the ideal adsorbed solution theory (IAST). The cyclic processes of gas charging and discharging from the ANG storage based on the ACPK are simulated in three modes: adiabatic, isothermal, and thermocontrolled. The adiabatic mode leads to a loss of 27–33% of energy capacity at 3.5 MPa compared to the isothermal mode, which has a 9.4–19.5% lower energy capacity compared to the thermocontrolled mode, with more efficient desorption of both methane and ethane
    corecore