7 research outputs found

    Adiabatic superconducting cells for ultra-low-power artificial neural networks

    No full text
    We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks

    A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit

    No full text
    We have determined conditions when a pair of coupled waveguides, a common element for integrated room-temperature photonics, can act as a qubit based on a system with a double-well potential. Moreover, we have used slow-varying amplitude approximation (SVA) for the “classical” wave equation to study the propagation of electromagnetic beams in a couple of dielectric waveguides both analytically and numerically. As a part of an extension of the optical-mechanical analogy, we have considered examples of “quantum operations” on the electromagnetic wave state in a pair of waveguides. Furthermore, we have provided examples of “quantum-mechanical” calculations of nonlinear transfer functions for the implementation of the considered element in optical neural networks

    Peculiarities of Resonant Absorption of Electromagnetic Signals in Multilayer Bolometric Sensors

    No full text
    We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation

    Peculiarities of Resonant Absorption of Electromagnetic Signals in Multilayer Bolometric Sensors

    No full text
    We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation

    Issues with Modeling a Tunnel Communication Channel through a Plasma Sheath

    No full text
    We consider two of the most relevant problems that arise when modeling the properties of a tunnel radio communication channel through a plasma layer. First, we studied the case of the oblique incidence of electromagnetic waves on a layer of ionized gas for two wave polarizations. The resonator parameters that provide signal reception at a wide solid angle were found. We also took into account the unavoidable presence of a protective layer between the plasma and the resonator, as well as the conducting elements of the antenna system in the dielectric itself. This provides the first complete simulation for a tunnel communication channel. Noise immunity and communication range studies were conducted for a prospective spacecraft radio line

    Superconducting Bio-Inspired Au-Nanowire-Based Neurons

    No full text
    High-performance modeling of neurophysiological processes is an urgent task that requires new approaches to information processing. In this context, two- and three-junction superconducting quantum interferometers with Josephson weak links based on gold nanowires are fabricated and investigated experimentally. The studied cells are proposed for the implementation of bio-inspired neurons—high-performance, energy-efficient, and compact elements of neuromorphic processor. The operation modes of an advanced artificial neuron capable of generating the burst firing activation patterns are explored theoretically. A comparison with the Izhikevich mathematical model of biological neurons is carried out
    corecore