331 research outputs found
A systemic view of the soft power
Soft power is a useful concept of political theory and sociology developed by J.S. Nye Jr. in 1990. However, this concept can be overly abstract and hence somewhat artificial. In particular, this concept has been criticized by other sources and points of view. This paper develops a more complex and systemic approach to the concept of soft power targeted to the field of international relations and aimed at being useful for decision-making. Such an approach could be used in other fields and provides alternative analytic possibilities
Evidence for a Direct Harmful Effect of Alcohol on Myocardial Health: A Large Cross-Sectional Study of Consumption Patterns and Cardiovascular Disease Risk Biomarkers From Northwest Russia, 2015 to 2017.
Background Alcohol drinking is an increasingly recognized risk factor for cardiovascular disease. However, there are few studies of the impact of harmful and hazardous drinking on biomarkers of myocardial health. We conducted a study in Russia to investigate the impact of heavy drinking on biomarkers of cardiac damage and inflammation. Methods and Results The Know Your Heart study recruited a random sample of 2479 participants from the population of northwest Russia (general population) plus 278 patients (narcology clinic subsample) with alcohol problems. The general population sample was categorized into harmful drinkers, hazardous drinkers, nonproblem drinkers, and nondrinkers, according to self-reported level of alcohol consumption, whereas the narcology clinic sample was treated as the separate group in the analysis. Measurements were made of the following: (1) high-sensitivity cardiac troponin T, (2) NT-proBNP (N-terminal pro-B-type natriuretic peptide), and (3) hsCRP (high-sensitivity C-reactive protein). The narcology clinic subsample had the most extreme drinking pattern and the highest levels of all 3 biomarkers relative to nonproblem drinkers in the general population: high-sensitivity cardiac troponin T was elevated by 10.3% (95% CI, 3.7%-17.4%), NT-proBNP by 46.7% (95% CI, 26.8%-69.8%), and hsCRP by 69.2% (95% CI, 43%-100%). In the general population sample, NT-proBNP was 31.5% (95% CI, 3.4%-67.2%) higher among harmful drinkers compared with nonproblem drinkers. Overall, NT-proBNP and hsCRP increased with increasing intensity of alcohol exposure (test of trend P<0.001). Conclusions These results support the hypothesis that heavy alcohol drinking has an adverse effect on cardiac structure and function that may not be driven by atherosclerosis
Recommended from our members
Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released during the Biodegradation of Porous Silicon Nanowires
The radiofrequency (RF) mild hyperthermia effect sensitized by biodegradable nanoparticles is a promising approach for therapy and diagnostics of numerous human diseases including cancer. Herein, we report the significant enhancement of local destruction of cancer cells induced by RF hyperthermia in the presence of degraded low-toxic porous silicon (PSi) nanowires (NWs). Proper selection of RF irradiation time (10 min), intensity, concentration of PSi NWs, and incubation time (24 h) decreased cell viability to 10%, which can be potentially used for cancer treatment. The incubation for 24 h is critical for degradation of PSi NWs and the formation of silicic acid ions H+ and H3SiO4- in abundance. The ions drastically change the solution conductivity in the vicinity of PSi NWs, which enhances the absorption of RF radiation and increases the hyperthermia effect. The high biodegradability and efficient photoluminescence of PSi NWs were governed by their mesoporous structure. The average size of pores was 10 nm, and the sizes of silicon nanocrystals (quantum dots) were 3-5 nm. Degradation of PSi NWs was observed as a significant decrease of optical absorbance, photoluminescence, and Raman signals of PSi NW suspensions after 24 h of incubation. Localization of PSi NWs at cell membranes revealed by confocal microscopy suggested that thermal poration of membranes could cause cell death. Thus, efficient photoluminescence in combination with RF-induced cell membrane breakdown indicates promising opportunities for theranostic applications of PSi NWs. © 2019 American Chemical Society
Magnetic resonance spectroscopy of single centers in silicon quantum wells
We present the new optically-detected magnetic resonance (ODMR) technique
which reveals single point defects in silicon quantum wells embedded in
microcavities within frameworks of the excitonic normal-mode coupling (NMC)
without the external cavity and the hf source.Comment: 8 pages, 7 figure
Studying accelerated cardiovascular ageing in Russian adults through a novel deep-learning ECG biomarker
Background: A non-invasive, easy-to-access marker of accelerated cardiac ageing would provide novel insights into the mechanisms and aetiology of cardiovascular disease (CVD) as well as contribute to risk stratification of those who have not had a heart or circulatory event. Our hypothesis is that differences between an ECG-predicted and chronologic age of participants (δage) would reflect accelerated or decelerated cardiovascular ageing
Methods: A convolutional neural network model trained on over 700,000 ECGs from the Mayo Clinic in the U.S.A was used to predict the age of 4,542 participants in the Know Your Heart study conducted in two cities in Russia (2015-2018). Thereafter, δage was used in linear regression models to assess associations with known CVD risk factors and markers of cardiac abnormalities.
Results: The biomarker δage (mean: +5.32 years) was strongly and positively associated with established risk factors for CVD: blood pressure, body mass index (BMI), total cholesterol and smoking. Additionally, δage had strong independent positive associations with markers of structural cardiac abnormalities: N-terminal pro b-type natriuretic peptide (NT-proBNP), high sensitivity cardiac troponin T (hs-cTnT) and pulse wave velocity, a valid marker of vascular ageing.
Conclusion: The difference between the ECG-age obtained from a convolutional neural network and chronologic age (δage) contains information about the level of exposure of an individual to established CVD risk factors and to markers of cardiac damage in a way that is consistent with it being a biomarker of accelerated cardiovascular (vascular) ageing. Further research is needed to explore whether these associations are seen in populations with different risks of CVD events, and to better understand the underlying mechanisms involved
Photoluminescent porous silicon nanowires as contrast agents for bioimaging
Porous silicon nanowires (pSi NWs) have attracted considerable interest due to their unique structural, optical properties and biocompatibility. The most common method for their top-down synthesis is metal-assisted chemical etching (MACE) of crystalline silicon (c-Si) wafers using silver nanoparticles as a catalyst. However, the replacement of silver with bioinert gold nanoparticles (Au NPs) markedly improves the efficiency of pSi NWs in biomedical applications. The present study demonstrates the fabrication of porous pSi NWs arrays using Au NPs as the catalyst in MACE of c-Si wafers with a resistivity of 1–5 mOhm·cm. Using scanning electron microscopy (SEM), the formation of arrays of porous nanowires with a diameter of 50 nm that consist of small silicon nanocrystals (nc-Si) and pores was observed. Raman spectroscopy analysis determined the size of nc-Si is about 4 nm. The pSi NWs exhibit effective photoluminescence (PL) with a peak in the red spectrum, which is attributed to the quantum confinement effect occurred in small 4 nm nc-Si. In addition, the pSi NWs exhibit low toxicity towards MCF-7 cancer cells, and their PL characteristics allow them to be used as contrast agents for bioimagin
External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
Objective - To validate a novel artificial-intelligence electrocardiogram algorithm (AI-ECG) to detect left ventricular systolic dysfunction (LVSD) in an external population.
Background - LVSD, even when asymptomatic, confers increased morbidity and mortality. We recently derived AI-ECG to detect LVSD using ECGs based on a large sample of patients treated at the Mayo Clinic.
Methods - We performed an external validation study with subjects from the Know Your Heart Study, a cross-sectional study of adults aged 35–69 years residing in two cities in Russia, who had undergone both ECG and transthoracic echocardiography. LVSD was defined as left ventricular ejection fraction ≤ 35%. We assessed the performance of the AI-ECG to identify LVSD in this distinct patient population.
Results - Among 4277 subjects in this external population-based validation study, 0.6% had LVSD (compared to 7.8% of the original clinical derivation study). The overall performance of the AI-ECG to detect LVSD was robust with an area under the receiver operating curve of 0.82. When using the LVSD probability cut-off of 0.256 from the original derivation study, the sensitivity, specificity, and accuracy in this population were 26.9%, 97.4%, 97.0%, respectively. Other probability cut-offs were analysed for different sensitivity values.
Conclusions - The AI-ECG detected LVSD with robust test performance in a population that was very different from that used to develop the algorithm. Population-specific cut-offs may be necessary for clinical implementation. Differences in population characteristics, ECG and echocardiographic data quality may affect test performance
Uncontrolled and apparent treatment resistant hypertension: a cross-sectional study of Russian and Norwegian 40-69 year olds.
BACKGROUND: Uncontrolled hypertension is a major cardiovascular risk factor. We examined uncontrolled hypertension and differences in treatment regimens between a high-risk country, Russia, and low-risk Norway to gain better understanding of the underlying factors. METHODS: Population-based survey data on 40-69 year olds with hypertension defined as taking antihypertensives and/or having high blood pressure (140+/90+ mmHg) were obtained from Know Your Heart Study (KYH, N = 2284), Russian Federation (2015-2018) and seventh wave of The Tromsø Study (Tromsø 7, N = 5939), Norway (2015-2016). Uncontrolled hypertension was studied in the subset taking antihypertensives (KYH: N = 1584; Tromsø 7: 2792)and defined as having high blood pressure (140+/90+ mmHg). Apparent treatment resistant hypertension (aTRH) was defined as individuals with uncontrolled hypertension on 3+ OR controlled on 4+ antihypertensive classes in the same subset. RESULTS: Among all those with hypertension regardless of treatment status, control of blood pressure was achieved in 22% of men (KYH and Tromsø 7), while among women it was 33% in Tromsø 7 and 43% in KYH. When the analysis was limited to those on treatment for hypertension, the percentage uncontrolled was higher in KYH (47.8%, CI 95 44.6-50.9%) than Tromsø 7 (38.2, 36.1-40.5%). The corresponding figures for aTRH were 9.8% (8.2-11.7%) and 5.7% (4.8-6.8%). Antihypertensive monotherapies were more common than combinations and used by 58% in Tromsø 7 and 44% in KYH. In both KYH and Tromsø 7, untreated hypertension was higher in men, those with no GP visit in the past year and problem drinkers. In both studies, aTRH was associated with older age, CVD history, obesity, and diabetes. In Tromsø 7, also male gender and any drinking. In KYH, also chronic kidney disease. CONCLUSION: There is considerable scope for promoting combination therapies in line with European treatment guidelines in both study populations. The factors associated with untreated hypertension overlap with known correlates of treatment non-adherence and health check non-attendance. In contrast, aTRH was characterised by obesity and underlying comorbidities potentially complicating treatment
- …