4,378 research outputs found

    A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33

    Get PDF
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors

    Specifying, Manufacturing, And Testing A Cryogenic Turboexpander Magnetic Bearing System.

    Get PDF
    LecturePg. 3-10The state-of-the-art magnetic bearing system, as it exists today, has several unique characteristics which tend to make certain applications of this technology more favorable than others. One application which seems quite favorable is the use of magnetic bearing systems in turboexpanders. One such project is discussed, beginning with the initial concept and ending with the rigorous testing of the finished machines. Several problem areas and the associated corrective actions are discussed

    Linking field-based ecological data with remotely sensed data using a geographic information system in two malaria endemic urban areas of Kenya

    Get PDF
    BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population ≈ 320,000) and Malindi (population ≈ 81,000), Kenya. Grid cells of 270 meters × 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter × 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R(2 )= 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R(2 )= 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters × 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities

    Bringing order to protein disorder through comparative genomics and genetic interactions

    Get PDF
    Abstract Background Intrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes. Recently, protein disorder has been associated with a wide variety of cellular processes and has been implicated in several human diseases. Despite its apparent functional importance, the sheer range of different roles played by protein disorder often makes its exact contribution difficult to interpret. Results We attempt to better understand the different roles of disorder using a novel analysis that leverages both comparative genomics and genetic interactions. Strikingly, we find that disorder can be partitioned into three biologically distinct phenomena: regions where disorder is conserved but with quickly evolving amino acid sequences (flexible disorder); regions of conserved disorder with also highly conserved amino acid sequences (constrained disorder); and, lastly, non-conserved disorder. Flexible disorder bears many of the characteristics commonly attributed to disorder and is associated with signaling pathways and multi-functionality. Conversely, constrained disorder has markedly different functional attributes and is involved in RNA binding and protein chaperones. Finally, non-conserved disorder lacks clear functional hallmarks based on our analysis. Conclusions Our new perspective on protein disorder clarifies a variety of previous results by putting them into a systematic framework. Moreover, the clear and distinct functional association of flexible and constrained disorder will allow for new approaches and more specific algorithms for disorder detection in a functional context. Finally, in flexible disordered regions, we demonstrate clear evolutionary selection of protein disorder with little selection on primary structure, which has important implications for sequence-based studies of protein structure and evolution

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33

    Get PDF
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors

    On the Two q-Analogue Logarithmic Functions

    Full text link
    There is a simple, multi-sheet Riemann surface associated with e_q(z)'s inverse function ln_q(w) for 0< q < 1. A principal sheet for ln_q(w) can be defined. However, the topology of the Riemann surface for ln_q(w) changes each time "q" increases above the collision point of a pair of the turning points of e_q(x). There is also a power series representation for ln_q(1+w). An infinite-product representation for e_q(z) is used to obtain the ordinary natural logarithm ln{e_q(z)} and the values of sum rules for the zeros "z_i" of e_q(z). For |z|<|z_1|, e_q(z)=exp{b(z)} where b(z) is a simple, explicit power series in terms of values of these sum rules. The values of the sum rules for the q-trigonometric functions, sin_q(z) and cos_q(z), are q-deformations of the usual Bernoulli numbers.Comment: This is the final version to appear in J.Phys.A: Math. & General. Some explict formulas added, and to update the reference
    • …
    corecore