1,131 research outputs found

    Overlapping-gate architecture for silicon Hall bar MOSFET devices in the low electron density regime

    Full text link
    We report the fabrication and study of Hall bar MOSFET devices in which an overlapping-gate architecture allows four-terminal measurements of low-density 2D electron systems, while maintaining a high density at the ohmic contacts. Comparison with devices made using a standard single gate show that measurements can be performed at much lower densities and higher channel resistances, despite a reduced peak mobility. We also observe a voltage threshold shift which we attribute to negative oxide charge, injected during electron-beam lithography processing.Comment: 4 pages, 4 figures, submitted for Applied Physics Letter

    Overlapping-gate architecture for silicon Hall bar MOSFET devices in the low electron density and high magnetic field regime

    Full text link
    A common issue in low temperature measurements of enhancement-mode metal-oxide-semiconductor (MOS) field-effect transistors (FETs) in the low electron density regime is the high contact resistance dominating the device impedance. In that case a voltage bias applied across the source and drain contact of a Hall bar MOSFET will mostly fall across the contacts (and not across the channel) and therefore magneto-transport measurements become challenging. However, from a physical point of view, the study of MOSFET nanostructures in the low electron density regime is very interesting (impurity limited mobility [1], carrier interactions [2,3] and spin-dependent transport [4]) and it is therefore important to come up with solutions [5,6] that work around the problem of a high contact resistance in such devices (c.f. Fig. 1 (a)).Comment: 3 page

    Hierarchy of modes in an interacting one-dimensional system.

    Get PDF
    Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R^{2}/L^{2}, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.We acknowledge financial support from the UK EPSRC through Grant No. EP/J01690X/1 and EP/J016888/1.This is the accepted manuscript. The final version is available at http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.196401
    • …
    corecore