523 research outputs found

    Single photon quantum non-demolition in the presence of inhomogeneous broadening

    Get PDF
    Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous treatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys. Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length 200μm200 \mu\mathrm{m} in single-crystal diamond containing a dilute ensemble of NV^- of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv purpose

    High speed quantum gates with cavity quantum electrodynamics

    Get PDF
    Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.Comment: 4 pages, 3 figures, minor revision

    Are quasars accreting at super-Eddington rates?

    Get PDF
    In a previous paper, Collin & Hur\'e (2001), using a sample of Active Galactic Nuclei (AGN) where the mass has been determined by reverberation studies (Kaspi et al. 2000), have shown that if the optical luminosity is emitted by a steady accretion disc, about half of the objects are accreting close to or higher than the Eddington rate. We conclude here that this result is unavoidable, unless the masses are strongly underestimated by reverberation studies, which does not seem to be the case. There are three issues to the problem: 1. Accretion proceeds at Eddington or super-Eddington rates through thick discs. Several consequences follow: an anti-correlation between the line widths of the lines and the Eddington ratios, and a decrease of the Eddington ratio with an increasing black hole mass. Extrapolated to all quasars, these results imply that the amount of mass locked in massive black holes should be larger than presently thought. 2. The optical luminosity is not produced directly by the gravitational release of energy, and super-Eddington rates are not required. The optical luminosity has to be emitted by a dense and thick medium located at large distances from the center (103^3 to 10410^4 gravitational radii). It can be due to reprocessing of the X-ray photons from the central source in a geometrically thin warped disc, or in dense "blobs" forming a geometrically thick system, which can be a part of the accretion flow or the basis of an outflow. 3. Accretion discs are completely "non standard". Presently neither the predictions of models nor the observed spectral distributions are sufficient to help choosing between these solutions.Comment: 16 pages, 11 figures, accepted in A&

    A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism

    Get PDF
    CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Exten-sive studies have been conducted with the aim of engineering BM3 to expand metabolite pro-duction towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production

    Roles of key active-site residues in flavocytochrome P450 BM3

    Get PDF
    Abbreviations used: P450, cytochrome P450 mono-oxygenase; ImC12, 12-(imidazolyl)dodecanoic acid; 1-PIM, 1-phenylimidazole.The effects of mutation of key active-site residues (Arg-47, Tyr-51, Phe-42 and Phe-87) in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed that the side chain of Arg-47 contributes more significantly to stabilization of the fatty acid carboxylate than does that of Tyr-51 (kinetic parameters for oxidation of laurate: R47A mutant, Km 859 µM, kcat 3960 min-1; Y51F mutant, Km 432 µM, kcat 6140 min-1; wild-type, Km 288 µM, kcat 5140 min-1). A slightly increased kcat for the Y51F-catalysed oxidation of laurate is probably due to decreased activation energy (DG‡) resulting from a smaller DG of substrate binding. The side chain of Phe-42 acts as a phenyl 'cap' over the mouth of the substrate-binding channel. With mutant F42A, Km is massively increased and kcat is decreased for oxidation of both laurate (Km 2.08 mM, kcat 2450 min-1) and arachidonate (Km 34.9 µM, kcat 14620 min-1; compared with values of 4.7 µM and 17100 min-1 respectively for wild-type). Amino acid Phe-87 is critical for efficient catalysis. Mutants F87G and F87Y not only exhibit increased Km and decreased kcat values for fatty acid oxidation, but also undergo an irreversible conversion process from a 'fast' to a 'slow' rate of substrate turnover [for F87G (F87Y)-catalysed laurate oxidation: kcat 'fast', 760 (1620) min-1; kcat 'slow', 48.0 (44.6) min-1; kconv (rate of conversion from fast to slow form), 4.9 (23.8) min-1]. All mutants showed less than 10% uncoupling of NADPH oxidation from fatty acid oxidation. The rate of FMN-to-haem electron transfer was shown to become rate-limiting in all mutants analysed. For wild-type P450 BM3, the rate of FMN-to-haem electron transfer (8340 min-1) is twice the steady-state rate of oxidation (4100 min-1), indicating that other steps contribute to rate limitation. Active-site structures of the mutants were probed with the inhibitors 12-(imidazolyl)dodecanoic acid and 1-phenylimidazole. Mutant F87G binds 1-phenylimidazole > 10-fold more tightly than does the wild-type, whereas mutant Y51F binds the haem-co-ordinating fatty acid analogue 12-(imidazolyl)dodecanoic acid > 30-fold more tightly than wild-type

    Frequentist Interpretation of Probability

    Get PDF
    Three series of azole piperazine derivatives that mimic dicyclotyrosine (cYY), the natural substrate of the essential Mycobacterium tuberculosis cytochrome P450 CYP121A1, were prepared and evaluated for binding affinity and inhibitory activity (MIC) against M. tuberculosis. Series A replaces one phenol group of cYY with a C3-imidazole moiety, series B includes a keto group on the hydrocarbon chain preceding the series A imidazole, whilst series C explores replacing the keto group of the piperidone ring of cYY with a CH2-imidazole or CH2-triazole moiety to enhance binding interaction with the heme of CYP121A1. The series displayed moderate to weak type II binding affinity for CYP121A1, with the exception of series B 10a, which displayed mixed type I binding. Of the three series, series C imidazole derivatives showed the best, although modest, inhibitory activity against M. tuberculosis (17d MIC = 12.5 μg/mL, 17a 50 μg/mL). Crystal structures were determined for CYP121A1 bound to series A compounds 6a and 6b that show the imidazole groups positioned directly above the haem iron with binding between the haem iron and imidazole nitrogen of both compounds at a distance of 2.2 Å. A model generated from a 1.5 Å crystal structure of CYP121A1 in complex with compound 10a showed different binding modes in agreement with the heterogeneous binding observed. Although the crystal structures of 6a and 6b would indicate binding with CYP121A1, the binding assays themselves did not allow confirmation of CYP121A1 as the target

    A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-12, pub-electronic 2021-10-21Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/M011208/1CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production

    Structural characterization of CYP144A1 - a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis.

    Get PDF
    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a "full-length" 434 amino acid version (CYP144A1-FLV) and (ii) a "truncated" 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5'-untranslated region and Shine-Dalgarno ribosome binding site

    Partial change in EphA4 knockout mouse phenotype: Loss of diminished GFAP upregulation following spinal cord injury

    Get PDF
    In a previous study we found that the EphA4 receptor inhibits regeneration following spinal cord injury by blocking regrowth of axons and regulation of astrocyte reactivity. In our original studies using EphA4 null mice [Goldshmit et al., J. Neurosci., 2004] we found attenuated astrocyte reactivity following spinal cord injury. Several other studies have now supported the role of EphA4 in regulating neural regeneration but a recent study [Herrmann et al., Exp. Neurol., 2010] did not find an effect of EphA4 on astrocyte reactivity. Re-examination of astrocytic gliosis following injury in our current cohort of EphA4 null mice revealed that they no longer showed attenuation of astrocyte reactivity, however other EphA4 null mouse phenotypes, such as decreased size of the dorsal funiculus were unaltered. We hypothesised that long-term breeding on the C57Bl/6 background may influence the EphA4-mediated astrocyte phenotype and compared astrocytic gliosis at 4 days following spinal cord injury in wildtype and EphA4 null mice on the C57Bl/6 background and backcrossed C57Bl/6×129Sv(F2) mice, as well as wildtype 129Sv mice. 129Sv mice had increased GFAP expression and increased numbers of reactive GFAP astrocytes compared to C57Bl/6 mice. There was no significant effect of EphA4 deletion on GFAP expression in C57Bl/6 mice or the F2 crosses other than a moderately decreased number of EphA4 null astrocytes in C57Bl/6 mice using one of two antibodies. Therefore, there has been an apparent change in EphA4-mediated astroglial phenotype associated with long term breeding of the EphA4 colony but it does not appear to be influenced by background mouse strain
    corecore