50 research outputs found

    The Treewidth of MDS and Reed-Muller Codes

    Full text link
    The constraint complexity of a graphical realization of a linear code is the maximum dimension of the local constraint codes in the realization. The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parametrization of the maximum-likelihood decoding complexity for linear codes. In this paper, we prove the surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complexity) of any of its trellis realizations. From this, we obtain exact expressions for the treewidth of these codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.Comment: This constitutes a major upgrade of previous versions; submitted to IEEE Transactions on Information Theor

    Path Gain Algebraic Formulation for the Scalar Linear Network Coding Problem

    Full text link
    In the algebraic view, the solution to a network coding problem is seen as a variety specified by a system of polynomial equations typically derived by using edge-to-edge gains as variables. The output from each sink is equated to its demand to obtain polynomial equations. In this work, we propose a method to derive the polynomial equations using source-to-sink path gains as the variables. In the path gain formulation, we show that linear and quadratic equations suffice; therefore, network coding becomes equivalent to a system of polynomial equations of maximum degree 2. We present algorithms for generating the equations in the path gains and for converting path gain solutions to edge-to-edge gain solutions. Because of the low degree, simplification is readily possible for the system of equations obtained using path gains. Using small-sized network coding problems, we show that the path gain approach results in simpler equations and determines solvability of the problem in certain cases. On a larger network (with 87 nodes and 161 edges), we show how the path gain approach continues to provide deterministic solutions to some network coding problems.Comment: 12 pages, 6 figures. Accepted for publication in IEEE Transactions on Information Theory (May 2010

    Secure Compute-and-Forward in a Bidirectional Relay

    Full text link
    We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally-occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple access (MAC) channel, and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message; and strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain "goodness" properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multi-hop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.Comment: v1 is a much expanded and updated version of arXiv:1204.6350; v2 is a minor revision to fix some notational issues; v3 is a much expanded and updated version of v2, and contains results on both perfect secrecy and strong secrecy; v3 is a revised manuscript submitted to the IEEE Transactions on Information Theory in April 201

    Deterministic Constructions for Large Girth Protograph LDPC Codes

    Full text link
    The bit-error threshold of the standard ensemble of Low Density Parity Check (LDPC) codes is known to be close to capacity, if there is a non-zero fraction of degree-two bit nodes. However, the degree-two bit nodes preclude the possibility of a block-error threshold. Interestingly, LDPC codes constructed using protographs allow the possibility of having both degree-two bit nodes and a block-error threshold. In this paper, we analyze density evolution for protograph LDPC codes over the binary erasure channel and show that their bit-error probability decreases double exponentially with the number of iterations when the erasure probability is below the bit-error threshold and long chain of degree-two variable nodes are avoided in the protograph. We present deterministic constructions of such protograph LDPC codes with girth logarithmic in blocklength, resulting in an exponential fall in bit-error probability below the threshold. We provide optimized protographs, whose block-error thresholds are better than that of the standard ensemble with minimum bit-node degree three. These protograph LDPC codes are theoretically of great interest, and have applications, for instance, in coding with strong secrecy over wiretap channels.Comment: 5 pages, 2 figures; To appear in ISIT 2013; Minor changes in presentatio
    corecore