85 research outputs found

    Robust interferometer for the routing of light beams carrying orbital angular momentum

    Get PDF
    We have developed an interferometer requiring only minimal angular alignment for the routing of beams carrying orbital angular momentum. The Mach–Zehnder interferometer contains a Dove prism in each arm where each has a mirror plane around which the transverse phase profile is inverted. One consequence of the inversions is that the interferometer needs no alignment. Instead the interferometer defines a unique axis about which the input beam must be coupled. Experimental results are presented for the fringe contrast, reaching a maximum value of 93±1%

    Potential one-forms for hyperk\"ahler structures with torsion

    Full text link
    It is shown that an HKT-space with closed parallel potential 1-form has D(2,1;−1)D(2,1;-1)-symmetry. Every locally conformally hyperk\"ahler manifold generates this type of geometry. The HKT-spaces with closed parallel potential 1-form arising in this way are characterized by their symmetries and an inhomogeneous cubic condition on their torsion.Comment: 16 pages, Latex, no figure

    Superconformal Multi-Black Hole Moduli Spaces in Four Dimensions

    Full text link
    Quantum mechanics on the moduli space of N supersymmetric Reissner-Nordstrom black holes is shown to admit 4 supersymmetries using an unconventional supermultiplet which contains 3N bosons and 4N fermions. A near-horizon limit is found in which the quantum mechanics of widely separated black holes decouples from that of strongly-interacting, near-coincident black holes. This near-horizon theory is shown to have an enhanced D(2,1;0) superconformal symmetry. The bosonic symmetries are SL(2,R) conformal symmetry and SU(2)xSU(2) R-symmetry arising from spatial rotations and the R-symmetry of N=2 supergravity.Comment: 23 pages, harvmac. v2: many typos fixe

    Timing of antibiotic therapy in the ICU

    Get PDF
    Severe or life threatening infections are common among patients in the intensive care unit (ICU). Most infections in the ICU are bacterial or fungal in origin and require antimicrobial therapy for clinical resolution. Antibiotics are the cornerstone of therapy for infected critically ill patients. However, antibiotics are often not optimally administered resulting in less favorable patient outcomes including greater mortality. The timing of antibiotics in patients with life threatening infections including sepsis and septic shock is now recognized as one of the most important determinants of survival for this population. Individuals who have a delay in the administration of antibiotic therapy for serious infections can have a doubling or more in their mortality. Additionally, the timing of an appropriate antibiotic regimen, one that is active against the offending pathogens based on in vitro susceptibility, also influences survival. Thus not only is early empiric antibiotic administration important but the selection of those agents is crucial as well. The duration of antibiotic infusions, especially for β-lactams, can also influence antibiotic efficacy by increasing antimicrobial drug exposure for the offending pathogen. However, due to mounting antibiotic resistance, aggressive antimicrobial de-escalation based on microbiology results is necessary to counterbalance the pressures of early broad-spectrum antibiotic therapy. In this review, we examine time related variables impacting antibiotic optimization as it relates to the treatment of life threatening infections in the ICU. In addition to highlighting the importance of antibiotic timing in the ICU we hope to provide an approach to antimicrobials that also minimizes the unnecessary use of these agents. Such approaches will increasingly be linked to advances in molecular microbiology testing and artificial intelligence/machine learning. Such advances should help identify patients needing empiric antibiotic therapy at an earlier time point as well as the specific antibiotics required in order to avoid unnecessary administration of broad-spectrum antibiotics

    OpenSep: A generalizable open source pipeline for SOFA score calculation and Sepsis-3 classification

    Get PDF
    EHR-based sepsis research often uses heterogeneous definitions of sepsis leading to poor generalizability and difficulty in comparing studies to each other. We have developed OpenSep, an open-source pipeline for sepsis phenotyping according to the Sepsis-3 definition, as well as determination of time of sepsis onset and SOFA scores. The Minimal Sepsis Data Model was developed alongside the pipeline to enable the execution of the pipeline to diverse sources of electronic health record data. The pipeline\u27s accuracy was validated by applying it to the MIMIC-IV version 1.0 data and comparing sepsis onset and SOFA scores to those produced by the pipeline developed by the curators of MIMIC. We demonstrated high reliability between both the sepsis onsets and SOFA scores, however the use of the Minimal Sepsis Data model developed for this work allows our pipeline to be applied to more broadly to data sources beyond MIMIC

    Comparison of early warning scores for sepsis early identification and prediction in the general ward setting

    Get PDF
    The objective of this study was to directly compare the ability of commonly used early warning scores (EWS) for early identification and prediction of sepsis in the general ward setting. For general ward patients at a large, academic medical center between early-2012 and mid-2018, common EWS and patient acuity scoring systems were calculated from electronic health records (EHR) data for patients that both met and did not meet Sepsis-3 criteria. For identification of sepsis at index time, National Early Warning Score 2 (NEWS 2) had the highest performance (area under the receiver operating characteristic curve: 0.803 [95% confidence interval [CI]: 0.795-0.811], area under the precision recall curves: 0.130 [95% CI: 0.121-0.140]) followed NEWS, Modified Early Warning Score, and quick Sequential Organ Failure Assessment (qSOFA). Using validated thresholds, NEWS 2 also had the highest recall (0.758 [95% CI: 0.736-0.778]) but qSOFA had the highest specificity (0.950 [95% CI: 0.948-0.952]), positive predictive value (0.184 [95% CI: 0.169-0.198]), and F1 score (0.236 [95% CI: 0.220-0.253]). While NEWS 2 outperformed all other compared EWS and patient acuity scores, due to the low prevalence of sepsis, all scoring systems were prone to false positives (low positive predictive value without drastic sacrifices in sensitivity), thus leaving room for more computationally advanced approaches

    Sepsis prediction for the general ward setting

    Get PDF
    OBJECTIVE: To develop and evaluate a sepsis prediction model for the general ward setting and extend the evaluation through a novel pseudo-prospective trial design. DESIGN: Retrospective analysis of data extracted from electronic health records (EHR). SETTING: Single, tertiary-care academic medical center in St. Louis, MO, USA. PATIENTS: Adult, non-surgical inpatients admitted between January 1, 2012 and June 1, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of the 70,034 included patient encounters, 3.1% were septic based on the Sepsis-3 criteria. Features were generated from the EHR data and were used to develop a machine learning model to predict sepsis 6-h ahead of onset. The best performing model had an Area Under the Receiver Operating Characteristic curve (AUROC or c-statistic) of 0.862 ± 0.011 and Area Under the Precision-Recall Curve (AUPRC) of 0.294 ± 0.021 compared to that of Logistic Regression (0.857 ± 0.008 and 0.256 ± 0.024) and NEWS 2 (0.699 ± 0.012 and 0.092 ± 0.009). In the pseudo-prospective trial, 388 (69.7%) septic patients were alerted on with a specificity of 81.4%. Within 24 h of crossing the alert threshold, 20.9% had a sepsis-related event occur. CONCLUSIONS: A machine learning model capable of predicting sepsis in the general ward setting was developed using the EHR data. The pseudo-prospective trial provided a more realistic estimation of implemented performance and demonstrated a 29.1% Positive Predictive Value (PPV) for sepsis-related intervention or outcome within 48 h

    Healthcare-associated infections (HAIs) during the coronavirus disease 2019 (COVID-19) pandemic: A time-series analysis

    Get PDF
    OBJECTIVE: To use interrupted time-series analyses to investigate the impact of the coronavirus disease 2019 (COVID-19) pandemic on healthcare-associated infections (HAIs). We hypothesized that the pandemic would be associated with higher rates of HAIs after adjustment for confounders. DESIGN: We conducted a cross-sectional study of HAIs in 3 hospitals in Missouri from January 1, 2017, through August 31, 2020, using interrupted time-series analysis with 2 counterfactual scenarios. SETTING: The study was conducted at 1 large quaternary-care referral hospital and 2 community hospitals. PARTICIPANTS: All adults ≥18 years of age hospitalized at a study hospital for ≥48 hours were included in the study. RESULTS: In total, 254,792 admissions for ≥48 hours occurred during the study period. The average age of these patients was 57.6 (±19.0) years, and 141,107 (55.6%) were female. At hospital 1, 78 CLABSIs, 33 CAUTIs, and 88 VAEs were documented during the pandemic period. Hospital 2 had 13 CLABSIs, 6 CAUTIs, and 17 VAEs. Hospital 3 recorded 11 CLABSIs, 8 CAUTIs, and 11 VAEs. Point estimates for hypothetical excess HAIs suggested an increase in all infection types across facilities, except for CLABSIs and CAUTIs at hospital 1 under the no pandemic scenario. CONCLUSIONS: The COVID-19 era was associated with increases in CLABSIs, CAUTIs, and VAEs at 3 hospitals in Missouri, with variations in significance by hospital and infection type. Continued vigilance in maintaining optimal infection prevention practices to minimize HAIs is warranted
    • …
    corecore