163 research outputs found
Phosphorothioate Anti-sense Oligonucleotides: The Kinetics and Mechanism of the Generation of the Sulfurising Agent from Phenylacetyl Disulfide (PADS)
The synthesis of phosphorothioate oligonucleotides is often accomplished in the pharmaceutical industry by the sulfurisation of the nucleotide-phosphite using phenylacetyl disulfide (PADS) which has an optimal combination of properties. This is best achieved by an initial ‘ageing’ of PADS for 48 hrs in acetonitrile with 3-picoline to generate polysulfides. The initial base-catalysed degradation of PADS occurs by an E1cB-type elimination to generate a ketene and acyldisulfide anion. Proton abstraction to reversibly generate a carbanion is demonstrated by H/D exchange, the rate of which is greatly increased by electron-withdrawing substituents in the aromatic ring of PADS. The ketene can be trapped intramolecularly by an o-allyl group. The disulfide anion generated subsequently attacks unreacted PADS on sulfur to give polysulfides, the active sulfurising agent. The rate of degradation of PADS is decreased by less basic substituted pyridines and is only first order in PADS indicating that the rate-limiting step is formation of the disulfide anion from the carbanion
Microbial Community Evolution Is Significantly Impacted by the Use of Calcium Isosaccharinic Acid as an Analogue for the Products of Alkaline Cellulose Degradation
Diasteriomeric isosaccharinic acid (ISA) is an important consideration within safety assessments for the disposal of the United Kingdoms’ nuclear waste legacy, where it may potentially influence radionuclide migration. Since the intrusion of micro-organisms may occur within a disposal concept, the impact of ISA may be impacted by microbial metabolism. Within the present study we have established two polymicrobial consortia derived from a hyperalkaline soil. Here, α-ISA and a diatereomeric mix of ISAs’ were used as a sole carbon source, reflecting two common substrates appearing within the literature. The metabolism of ISA within these two consortia was similar, where ISA degradation resulted in the acetogenesis and hydrogenotrophic methanogenesis. The chemical data obtained confirm that the diastereomeric nature of ISA is likely to have no impact on its metabolism within alkaline environments. High throughput sequencing of the original soil showed a diverse community which, in the presence of ISA allowed for the dominance the Clostridiales associated taxa with Clostridium clariflavum prevalent. Further taxonomic investigation at the genus level showed that there was in fact a significant difference (p = 0.004) between the two community profiles. Our study demonstrates that the selection of carbon substrate is likely to have a significant impact on microbial community composition estimations, which may have implications with respect to a safety assessment of an ILW-GDF
Isolation of sophorose during sophorolipid production and studies of its stability in aqueous alkali: epimerisation of sophorose to 2-O-β-d-glucopyranosyl-d-mannose
NMR and anion exchange chromatography analysis of the waste streams generated during the commercial production of sophorolipids by the yeast Candida bombicola identified the presence of small but significant quantities (1% w/v) of free sophorose. Sophorose, a valuable disaccharide, was isolated from the aqueous wastes using a simple extraction procedure and was purified by chromatography on a carbon celite column providing easy access to large quantities of the disaccharide. Experiments were undertaken to identify the origin of sophorose and it is likely that acetylated sophorose derivatives were produced by an enzyme catalysed hydrolysis of the glucosyl-lipid bond of sophorolipids; the acetylated sophorose derivatives then undergo hydrolysis to release the parent disaccharide.
Treatment of sophorose with aqueous alkali at elevated temperatures (0.1M NaOH at 50 °C) resulted in C2-epimerisation of the terminal reducing sugar and its conversion to the corresponding 2-O-β-d-glucopyranosyl-d-mannose which was isolated and characterised. In aqueous alkaline solution β-(1,2)-linked glycosidic bonds do not undergo either hydrolysis or peeling reactions
Floc formation reduces the pH stress experienced by microorganisms living in alkaline environments
The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes is heavily dependent on their ability to survive the calcium dominated, hyper-alkaline conditions resulting from the dissolution of the cementitious materials. The present study shows that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to pH 13.0. The flocs were dominated by Alishewanella and Dietzia sp, producing a mannose rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ~10 µm thick layer around the cells within the centre of the flocs, which were capable of growth at pH 11.0 and 11.5, maintaining internal pH values of pH 10.4 and 10.7 respectively. Survival was observed at pH 12.0, where an internal floc pH of 11.6 was observed alongside a reduced associated biomass. Limited floc survival (<2 weeks) was observed at pH 13.0.This study demonstrates that flocs are able to maintain a lower internal pH in response to the hyperalkaline conditions expected to occur within a cementitious, geological disposal facility for radioactive wastes and indicates that floc communities within such a facility would be capable of survival up to a pH of 12.0
The impact of biofilms upon surfaces relevant to an intermediate level radioactive waste geological disposal facility under simulated near field conditions.
The ability of biofilms to form on a range of materials (cementious backfill (Nirex Reference Vault Backfill (NRVB)), graphite and stainless steel) relevant to potential UK intermediate level radioactive waste (ILW) disposal concepts was investigated by exposing these surfaces to alkaliphilic flocs generated by mature biofilm communities. Flocs are aggregates of biofilm material that are able to act as a transport vector for the propagation of biofilms.. In systems where biofilm formation was observed there was also a decrease in the sorption of isosaccharinic acids to the NRVB. The biofilms were composed of cells, extracellular DNA (eDNA), proteins and lipids with a smaller polysaccharide fraction, which was biased towards mannopyranosyl linked carbohydrates. The same trend was seen with the graphite and stainless steel surfaces at these pH values, but in this case the biofilms associated with the stainless steel surfaces had a distinct eDNA basal layer that anchored the biofilm to the surface. At pH 13 no structured biofilm was observed, rather all the surfaces accumulated an indistinct organic layer composed of biofilm materials. This was particularly the case for the stainless steel coupons which accumulated relatively large quantities of eDNA. The results demonstrate that there is the potential for biofilm formation in an ILW-GDF provided an initiation source for the microbial biofilm is present. They also suggest that even when conditions are too harsh for biofilm formation, exposed surfaces may accumulate organic material such as eDNA
Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.
The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility
A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells
Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the capability of strain DG to interact with the host is, at least partly, associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon NMR and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of L-rhamnose, D-galactose, and N-acetyl-D-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that the DG-EPS displays immunostimulating properties by enhancing the gene expression of the pro-inflammatory cytokines TNF-α and IL-6, and, particularly, the chemokines IL-8 and CCL20 in the THP-1 human monocytic cell line. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, the DG-EPS is a bacterial macromolecule with the potential ability to boost the immune system as either a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross-talk between L. paracasei DG and the host
Structure of the high molecular weight exopolysaccharide
the EPS has a hexasaccharide repeating unit with the following structure
Developing cellulosic waste products as platform chemicals: protecting group chemistry of α-glucoisosaccharinic acid
Alpha and beta-glucoisosaccharinic acids ((2S,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid and (2R,4S)-2,4,5-trihydroxy-2-(hydroxymethyl)pentanoic acid) which are produced when cellulosic materials are treated with aqueous alkali are potentially valuable platform chemicals. Their highly functionalised carbon skeleton, with fixed chirality at C-2 and C-4, makes them ideal starting materials for use in synthesis. In order to assess the potential of these saccharinic acids as platform chemicals we have explored the protecting group chemistry of the lactone form of alpha-glucoisosaccharinic acid (α-GISAL). We report here the use of single and multiple step reaction pathways leading to the regioselective protection of the three different hydroxyl groups of α-GISAL. We report strategies for protecting the three different hydroxyl groups individually or in pairs. We also report the synthesis of a range of tri-O-protected α-GISAL derivatives where a number of the products contain orthogonal protecting groups
Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal
The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration
- …