2 research outputs found

    Fabrication and photoelectrochemical studies of BiTiO pyrochlore thin films by aerosol assisted chemical vapour deposition

    Get PDF
    Phase pure thin film BiTiO photoelectrodes were produced by aerosol assisted chemical vapour deposition at 600 °C for the first time. X-ray diffraction analysis showed that the as-deposited BiTiO films were amorphous in nature; however, post-deposition annealing at 600°C for 12 h significantly increased the crystallinity to give phase pure BiTiO. Scanning electron microscopy revealed that the as-deposited film had a cauliflower-like structure with features ranging from 0.5 to 1.0 μm in size. It was found that the post-annealing step sintered the features together reducing the pores in the structure and giving rise to larger features of 1.0-2.0 μm in size. Optical studies showed that the BiTiO film had a direct band gap of 2.74 eV. The photoelectrochemical properties of BiTiO were tested and it was found that the electrodes exhibited a photocurrent density of 1.8 μA cm at 0.23 V vs. Ag|AgCl. Results showed that BiTiO is an attractive material for photoelectrochemical water splitting

    Aerosol-assisted CVD of bismuth vanadate thin films and their photoelectrochemical properties

    Get PDF
    Thin film bismuth vanadate (BiVO4) photoelectrodes are prepared by aerosol-assisted (AA)CVD for the first time on fluorine-doped tin oxide (FTO) glass substrates. The BiVO4 photoelectrodes are characterised by X-ray diffraction (XRD), Raman spectroscopy (RS), and energy-dispersive X-ray (EDX) spectroscopy and are found to consist of phase-pure monoclinic BiVO4. Scanning electron microscopy (SEM) analysis shows that the thin film is uniform with a porous structure, and consists of particles approximately 75-125nm in diameter. The photoelectrochemical (PEC) properties of the BiVO4 photoelectrodes are studied in aqueous 1M Na2SO4 and show photocurrent densities of 0.4mAcm-2, and a maximum incident-photon-to-electron conversion efficiency (IPCE) of 19% at 1.23V vs. the reversible hydrogen electrode (RHE). BiVO4 photoelectrodes prepared by this method are thus highly promising for use in PEC water-splitting cells. Thin film bismuth vanadate (BiVO4) photoelectrodes are prepared by AACVD for the first time on fluorine-doped tin oxide (FTO) glass substrates. The photoelectrochemical (PEC) properties of the BiVO4 photoelectrodes are studied in aqueous 1M Na2SO4 and show photocurrent densities of 0.4mAcm-2 and a maximum incident-photon-to-electron conversion efficiency (IPCE) of 19% at 1.23V vs. RHE. BiVO4 photoelectrodes prepared by this method are highly promising for use in PEC water-splitting cells
    corecore