59 research outputs found

    Context, spacetime loops, and the interpretation of quantum mechanics

    Full text link
    Three postulates are discussed: first that well-defined properties cannot be assigned to an isolated system, secondly that quantum unitary evolution is atemporal, and thirdly that some physical processes are never reversed. It is argued that these give useful insight into quantum behaviour. The first postulate emphasizes the fundamental role in physics of interactions and correlations, as opposed to internal properties of systems. Statements about physical interactions can only be framed in a context of further interactions. This undermines the possibility of objectivity in physics. However, quantum mechanics retains objectivity through the combination of the second and third postulates. A rule is given for determining the circumstances in which physical evolution is non-unitary. This rule appeals to the absence of spacetime loops in the future evolution of a set of interacting systems. A single universe undergoing non-unitary evolution is a viable interpretation.Comment: 19 pages. For special issue of J.Phys.A, "The Quantum Universe", on the occasion of 70th birthday of Professor Giancarlo Ghirard

    The non-existence of the self-accelerating dipole, and related questions

    Full text link
    We calculate the self-force of a constantly accelerating electric dipole, showing, in particular, that classical electromagnetism does not predict that an electric dipole could self-accelerate, nor could it levitate in a gravitational field. We also resolve a paradox concerning the inertial mass of a longitudinally accelerating dipole, showing that the combined system of dipole plus field can be assigned a well-defined energy-momentum four-vector, so that the Principle of Relativity is satisfied. We then present some general features of electromagnetic phenomena in a gravitational field described by the Rindler metric, showing in particular that an observer fixed in a gravitational field described by the Rindler metric will find any charged object supported in the gravitational field to possess an electromagnetic self-force equal to that observed by an inertial observer relative to which the body undergoes rigid hyperbolic motion. It follows that the Principle of Equivalence is satisfied by these systems.Comment: 10 pages, 4 figures; improved discussion of pressure; added remarks on simultaneity and Rindler fram

    Matter-wave coherence limit owing to cosmic gravitational wave background

    Full text link
    We study matter-wave interferometry in the presence of a stochastic background of gravitational waves. It is shown that if the background has a scale-invariant spectrum over a wide bandwidth (which is expected in a class of inflationary models of Big Bang cosmology), then separated-path interference cannot be observed for a lump of matter of size above a limit which is very insensitive to the strength and bandwidth of the fluctuations, unless the interferometer is servo-controlled or otherwise protected. For ordinary solid matter this limit is of order 1--10 mm. A servo-controlled or cross-correlated device would also exhibit limits to the observation of macroscopic interference, which we estimate for ordinary matter moving at speeds small compared to c.Comment: 8 pages; 3 figure
    • …
    corecore