262 research outputs found
Are current dietary guidelines relevant to subjects on cholesterol-lowering drugs?
The present paper reviews the evidence as to whether patients on lipid-lowering drugs should restrict dietary SFA intake. Premature mortality from atherosclerotic CVD has fallen dramatically in many high-income countries. This appears to be due to a combination of improved treatment following a cardiovascular event and reduced risk factors, including LDL-cholesterol. Whether this reduction is due to changes in dietary habits, or the increasing availability of highly potent cholesterol-reducing drugs remains to be firmly established. While reducing dietary SFA intake has been the cornerstone of public health nutrition policy for several decades, the efficacy of such dietary changes has been challenged in recent years. While there remains a lack of consensus in the literature, there is an emerging view that dietary advice should be specifically modified to emphasise replacing SFA with PUFA in the diet rather than carbohydrate. The advice to moderate dietary SFA intake given to the general population is usually also given to those individuals at high risk of CVD who are prescribed lipid-lowering drugs. There is limited evidence to suggest that any potential benefit of such a diet on LDL-cholesterol may be offset by a concurrent decrease in HDL-cholesterol. However, as diets rich in SFA are frequently energy-dense, and rich in red and processed meat (potential risk factors for CVD in themselves), it would seem prudent to continue to advise patients on lipid-lowering drugs to maintain a low-fat diet
Integration of on-farm biodiesel production with anaerobic digestion to maximise energy yield and greenhouse gas savings from process and farm residues
Anaerobic co-digestion of residues from the cold pressing and trans-esterification of oilseed rape (OSR) with other farm wastes was considered as a means of enhancing the sustainability of on-farm biodiesel production. The study verified the process energy yields using biochemical methane potential (BMP) tests and semi-continuous digestion trials. The results indicated that high proportions of OSR cake in the feedstock led to a decrease in volatile solids destruction and instability of the digestion process. Co-digestion with cattle slurry or with vegetable waste led to acceptable specific and volumetric methane productions, and a digestate low in potentially toxic elements (PTE). The results were used to evaluate energy balances and greenhouse gas emissions of the integrated process compared with biodiesel production alone. Co-digestion was shown to provide energy self-sufficiency and security of supply to farms, with sufficient surplus for export as fuel and electricit
Energetic and environmental benefits of co-digestion of food waste and cattle slurry: a preliminary assessment
The research evaluated the feasibility of centralised pre-processing and pasteurisation of source-separated domestic food waste followed by transport to farms for anaerobic co-digestion with dairy cattle slurry. Data from long-term experiments on the co-digestion of these two substrates was used to predict gross energy yields; net yields were then derived from full system analysis using an energy modelling tool. The ratio of cattle slurry to food waste in the co-digestion was based on the nutrient requirements of the dairy farm and was modelled using both nitrogen and phosphorous as the limiting factor. The model was run for both medium-size and large farms in which the cattle were housed either all year round or for only 50% of the year. The results showed that the addition of food waste improved energy yields per digester unit volume, with a corresponding increased potential for improving farm income by as much as 50%. Data for dairy farms in the county of Hampshire UK, which has a low density of dairy cattle and a large population, was used as a stringent test case to verify the applicability of the concept. In this particular case the nutrient requirements of the larger farms could be satisfied, and further benefits were gained from the reduction in greenhouse gas emissions avoided through improved manure management and fertiliser imports. The results indicated that this approach offered major advantages in terms of resource conservation and pollution abatement when compared to either centralised anaerobic digestion of food waste or energy recovery from thermal treatmen
Recommended from our members
Rate of photosynthetic induction in fluctuating light varies widely among genotypes of wheat.
Crop photosynthesis and yield are limited by slow photosynthetic induction in sunflecks. We quantified variation in induction kinetics across diverse genotypes of wheat for the first time. Following a preliminary study that hinted at wide variation in induction kinetics across 58 genotypes, we grew 10 genotypes with contrasting responses in a controlled environment and quantified induction kinetics of carboxylation capacity (Vcmax) from dynamic A versus ci curves after a shift from low to high light (from 50 µmol m-2 s-1 to 1500 µmol m-2 s-1), in five flag leaves per genotype. Within-genotype median time for 95% induction (t95) of Vcmax varied 1.8-fold, from 5.2 min to 9.5 min. Our simulations suggest that non-instantaneous induction reduces daily net carbon gain by up to 15%, and that breeding to speed up Vcmax induction in the slowest of our 10 genotypes to match that in the fastest genotype could increase daily net carbon gain by up to 3.4%, particularly for leaves in mid-canopy positions (cumulative leaf area index ≤1.5 m2 m-2), those that experience predominantly short-duration sunflecks, and those with high photosynthetic capacities
Improving the sustainability of global meat and milk production
Global demand for meat and dairy products has increased dramatically in recent decades and, through a combination of global population growth, increased lifespan and improved economic prosperity in the developing world will inevitably continue to increase. The predicted increases in livestock production will put a potentially unsustainable burden on global resources, including land for production of crops required for animal feed and fresh water. Furthermore, animal production itself is associated with greenhouse gas production, which may speed up global warming and thereby impact on our ability to produce food. There is, therefore, an urgent need to find methods to improve the sustainability of livestock production. This review will consider various options for improving the sustainability of livestock production with particular emphasis on finding ways to replace conventional crops as sources of animal feeds. Alternatives, such as currently under-utilized crops (grown on marginal land) and insects, reared on substrates not suitable for direct consumption by farm animals, represent possible solutions. Coupled with a moderation of excessive meat consumption in wealthier countries, such strategies may secure the long-term sustainability of meat and milk production and mitigate against the adverse health effects of excessive intake
Impact of consumption of animal products on cardiovascular disease, diabetes, and cancer in developed countries
© Salter. • Meat and milk represent an energy-dense, protein-rich food source that also contributes significantly to the required intake of a range of micronutrients. With increasing economic prosperity, populations tend to increase their consumption of such animal products. However, in the longer established "developed" countries, there has been a significant shift from red meat and full-fat milk toward poultry and fat-reduced dairy products. • While premature death from cardiovascular disease has decreased dramatically in many developed countries, the prevalence of the disease remains high. High intake of saturated fatty acids contributes to the development of cardiovascular disease by increasing plasma cholesterol. However, recent evidence suggests that replacing saturated fatty acids with unsaturated fatty acids is more beneficial than replacing them with carbohydrates. While very high intakes of meat, particularly processed meat, may be associated with increased risk of cardiovascular disease, at more modest intakes where it is consumed as a part of a varied diet containing appropriate sources of unsaturated fatty acids, there is little evidence of any deleterious effect. • Eating energy-dense diets, combined with the sedentary lifestyle adopted by many individuals in developed countries, has resulted in incidences of obesity of almost epidemic proportions. In time, a significant number of obese individuals become insulin resistant and develop metabolic syndrome, a cluster of risk factors that predispose the individual to both cardiovascular disease and type 2 diabetes. • Even at relatively high intakes, there is little evidence that milk has any significant adverse effects on health and may be protective against cardiovascular disease, metabolic syndrome, and colorectal cancer. While other dairy products certainly contribute to consumption of saturated fatty acids, evidence for negative, or positive, effects on health is limited
A novel liver specific isoform of the rat LAR transcript is expressed as a truncated isoform encoded from a 5'UTR located within intron 11
<p>Abstract</p> <p>Background</p> <p>The leukocyte common antigen related receptor (LAR) protein has been shown to modulate the signal transduction of a number of different growth factors, including insulin and insulin-like growth factor 1. Splice variants exhibit differing roles and are expressed according to tissue type and developmental stage.</p> <p>Results</p> <p>Using 5'RACE, we identified a 5'UTR within intron 11 of the rat LAR gene. We demonstrated that this gives rise to a novel isoform of the LAR transcript encoded from the identified region within intron 11. By priming across the site from exon 11 to exon 15 we show that the novel 5'UTR is not represented in the full-length transcript and thus, it produces a truncated form of the LAR mRNA. We examined the tissue distribution of this novel isoform and found it to be exclusively expressed in liver. We additionally identified a liver specific 150 kDa band with western blotting which we propose may represent the protein product of the novel transcript. Luciferase assays showed the region immediately upstream of the 5'UTR to possesses considerable promoter activity and that this may be conferred by the presence of a number of putative binding sites for liver enriched transcription factors.</p> <p>Conclusion</p> <p>In summary, we describe a novel, liver specific, truncated isoform of the LAR transcript transcribed under the control of an intronic promoter, potentially representing a previously unidentified modulator of hepatic insulin signalling.</p
Synergism between cAMP and PPARγ signalling in the initiation of UCP1 gene expression in HIB1B brown adipocytes
Expression of the brown adipocyte-specific gene, uncoupling protein 1 (UCP1), is increased by both PPAR stimulation and cAMP activation through their ability to stimulate the expression of the PPAR coactivator PGC1. In HIB1B brown preadipocytes, combination of the PPAR agonist, rosiglitazone, and the cAMP stimulator forskolin synergistically increased UCP1 mRNA expression, but PGC1 expression was only increased additively by the two drugs. The PPAR antagonist, GW9662, and the PKA inhibitor, H89, both inhibited UCP1 expression stimulated by rosiglitazone and forskolin but PGC1 expression was not altered to the same extent. Reporter studies demonstrated that combined rosiglitazone and forskolin synergistically activated transcription from a full length 3.1 kbp UCP1 luciferase promoter construct, but the response was only additive and much reduced when a minimal 260 bp proximal UCP1 promoter was examined. Rosiglitazone and forskolin in combination were able to synergistically stimulate promoters comprising of tandem repeats of either PPREs or CREs. We conclude that rosiglitazone and forskolin act together to synergistically activate the UCP1 promoter directly rather than by increasing PGC1 expression and by a mechanism involving cross-talk between the signalling systems regulating the CRE and PPRE on the promoters
Role of Novel Protein Sources in Sustainably Meeting Future Global Requirements
© 2021 American Medical Association. All rights reserved. Global population growth, increased life expectancy and climate change are all impacting on the world’s food systems. In industrialized countries many individuals are consuming significantly more protein than needed to maintain health, with the majority being obtained from animal products, including meat, dairy, fish and other aquatic animals. Current animal production systems are responsible for a large proportion of land and fresh- water use, and directly contributing to climate change through the production of greenhouse gases. Overall, approximately 60% of the global protein produced is used for animal and fish feed. Concerns about their impact on both human, and planetary health, have led to calls to dramatically curb our consumption of animal products
- …