4,709 research outputs found

    Multi-epoch infrared photometry of the star forming region G173.58+2.45

    Full text link
    We present a multi-epoch infrared photometric study of the intermediate-mass star forming region G173.58+2.45. Photometric observations are obtained using the near-infrared JHKL′M′JHKL'M' filters and narrow-band filters centered at the wavelengths of H2_2 (1-0) S(1) (2.122 μ\mum) and [FeII] (1.644 μ\mum) lines. The H2_2 image shows molecular emission from shocked gas, implying the presence of multiple star formation and associated outflow activity. We see evidence for several collimated outflows. The most extended jet is at least 0.25 pc in length and has a collimation factor of ∼\sim 10, which may be associated with a binary system within the central cluster, resolved for the first time here. This outflow is found to be episodic; probably occurring or getting enhanced during the periastron passage of the binary. We also find that the variable star in the vicinity of the outflow source, which was known as a FU Ori type star, is probably not a FU Ori object. However, it does drive a spectacular outflow and the variability is likely to be related to accretion, when large clouds of gas and dust spiral in towards the central source. Many other convincing accretion-outflow systems and YSO candidates are discovered in the field.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    An orthogonal oriented quadrature hexagonal image pyramid

    Get PDF
    An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed

    Outer space and oocyte developmental competence.

    Get PDF

    Regulation of blastocyst formation

    Full text link

    Simulated Experince Evaluation in Developing Multi-agent Coordination Graphs

    Get PDF
    Cognitive science has proposed that a way people learn is through self-critiquing by generating \u27what-if\u27 strategies for events (simulation). It is theorized that people use this method to learn something new as well as to learn more quickly. This research adds this concept to a graph-based genetic program. Memories are recorded during fitness assessment and retained in a global memory bank based on the magnitude of change in the agent’s energy and age of the memory. Between generations, candidate agents perform in simulations of the stored memories. Candidates that perform similarly to good memories and differently from bad memories are more likely to be included in the next generation. The simulation-informed genetic program is evaluated in two domains: sequence matching and Robocode. Results indicate the algorithm does not perform equally in all environments. In sequence matching, experiential evaluation fails to perform better than the control. However, in Robocode, the experiential evaluation method initially outperforms the control then stagnates and often regresses. This is likely an indication that the algorithm is over-learning a single solution rather than adapting to the environment and that learning through simulation includes a satisficing component

    Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation

    Get PDF
    BACKGROUND: Mechanisms that confer an ability to respond positively to environmental osmolarity are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38 mitogen-activated protein kinase (MAPK) occurs following exposure to hyperosmotic treatment. Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM) was linked to p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM is cerebral cavernous malformation 2 (CCM2). The present study was conducted to investigate whether CCM2 is expressed during mouse preimplantation development and to determine whether this scaffolding protein is associated with p38 MAPK activation following exposure of preimplantation embryos to hyperosmotic environments. RESULTS: Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents (Map3k3, Map2k3, Map2k6, and Map2k4) are expressed throughout mouse preimplantation development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2K6 and MAP2K4 were also detected throughout preimplantation development. Embryo culture in hyperosmotic media increased p38 MAPK activity in conjunction with elevated CCM2 levels. CONCLUSION: These results define the expression of upstream activators of p38 MAPK during preimplantation development and indicate that embryo responses to hyperosmotic environments include elevation of CCM2 and activation of p38 MAPK

    Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro

    Get PDF
    Substantially less development to the blastocyst stage occurs in vitro than in vivo and this may be due to deficiencies in oocyte competence. Although a large proportion of bovine oocytes undergo spontaneous nuclear maturation, less is known about requirements for proper cytoplasmic maturation. Commonly, supraphysiological concentrations of FSH and LH are added to maturation media to improve cumulus expansion, fertilization and embryonic development. Therefore, various concentrations of porcine FSH (pFSH) and recombinant human FSH (rhFSH) were investigated for their effect on bovine cumulus expansion in vitro. Expression of FSHr, LHr and Cx43 mRNAs was determined in cumulus-oocyte complexes to determine whether they would be useful markers of oocyte competence. In serum-free media, only 1000 ng/ml pFSH induced marked cumulus expansion, but the effect of 100 ng/ml pFSH was amplified in the presence of 10% serum. In contrast, cumulus expansion occurred with 1 ng/ml rhFSH in the absence of serum. FSHr mRNA was highest at 0–6 h of maturation, then abundance decreased. Similarly, Cx43 mRNA expression was highest from 0–6 h but decreased by 24 h of maturation. However, the relative abundance of LHr mRNA did not change from 6–24 h of maturation. Decreased levels of FSHr, LHr and Cx43 mRNAs were detected in COCs of poorer quality. In conclusion, expansion of bovine cumulus occurred at low doses of rhFSH in serum-free media. In summary, FSHr, LHr and Cx43 mRNA abundance reflects COC quality and FSHr and Cx43 mRNA expression changes during in vitro maturation; these genes may be useful markers of oocyte developmental competence

    Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    Get PDF
    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten\u27s medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways
    • …
    corecore