10 research outputs found

    Analysis of human α globin gene mutations that impair binding to the α hemoglobin stabilizing protein

    No full text
    Alpha hemoglobin stabilizing protein (AHSP) reversibly binds nascent α globin to maintain its native structure and facilitate its incorporation into hemoglobin A. Previous studies indicate that some naturally occurring human α globin mutations may destabilize the protein by inhibiting its interactions with AHSP. However, these mutations could also affect hemoglobin A production through AHSP-independent effects, including reduced binding to β globin. We analyzed 6 human α globin variants with altered AHSP contact surfaces. Alpha globin amino acid substitutions H103Y, H103R, F117S, and P119S impaired interactions with both AHSP and β globin. These mutations are destabilizing in biochemical assays and are associated with microcytosis and anemia in humans. By contrast, K99E and K99N α globins bind β globin normally but exhibit attenuated binding to AHSP. These mutations impair protein folding and expression in vitro and appear to be mildly destabilizing in vivo. In Escherichia coli and erythroid cells, α globin K99E stability is rescued on coexpression with AHSP mutants in which binding to the abnormal globin chain is restored. Our results better define the biochemical properties of some α globin variants and support the hypothesis that AHSP promotes α globin chain stability during human erythropoiesis

    Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus

    Get PDF
    Many individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. We identify PROCR-p.Ser219Gly as the likely causal variant at the locus and protein C as a causal factor. Using genetic analyses, human recall-by-genotype and in vitro experimentation, we demonstrate that PROCR-219Gly increases plasma levels of (activated) protein C through endothelial protein C receptor (EPCR) ectodomain shedding in endothelial cells, attenuating leukocyte–endothelial cell adhesion and vascular inflammation. We also associate PROCR-219Gly with an increased pro-thrombotic state via coagulation factor VII, a ligand of EPCR. Our study, which links PROCR-219Gly to CAD through anti-inflammatory mechanisms and to VTE through pro-thrombotic mechanisms, provides a framework to reveal the mechanisms underlying similar cross-phenotype associations
    corecore