21 research outputs found

    Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Get PDF
    BACKGROUND: Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia). To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. RESULTS: We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. CONCLUSION: The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms

    Delayed sympathetic dependence in the spared nerve injury (SNI) model of neuropathic pain

    Get PDF
    BACKGROUND: Clinical and experimental studies of neuropathic pain support the hypothesis that a functional coupling between postganglionic sympathetic efferent and sensory afferent fibers contributes to the pain. We investigated whether neuropathic pain-related behavior in the spared nerve injury (SNI) rat model is dependent on the sympathetic nervous system. RESULTS: Permanent chemical sympathectomy was achieved by daily injection of guanethidine (50 mg/kg s.c.) from age P8 to P21. SNI was performed at adulthood followed by 11 weeks of mechanical and thermal hypersensitivity testing. A significant but limited effect of the sympathectomy on SNI-induced pain sensitivity was observed. The effect was delayed and restricted to cold allodynia-like behavior: SNI-related cold scores were lower in the sympathectomized group compared to the control group at 8 and 11 weeks after the nerve injury but not before. Mechanical hypersensitivity tests (pinprick and von Frey hair threshold tests) showed no difference between groups during the study period. Concomitantly, pericellular tyrosine-hydroxylase immunoreactive basket structures were observed around dorsal root ganglia (DRG) neurons 8 weeks after SNI, but were absent at earlier time points after SNI and in sham operated controls. CONCLUSION: These results suggest that the early establishment of neuropathic pain-related behavior after distal nerve injury such as in the SNI model is mechanistically independent of the sympathetic system, whereas the system contributes to the maintenance, albeit after a delay of many weeks, of response to cold-related stimuli

    GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord

    Get PDF
    Axonal regeneration within the CNS fails due to the growth-inhibitory environment and the limited intrinsic growth capacity of injured neurons. Injury to DRG peripheral axons induces expression of growth associated genes including members of the glial-derived neurotrophic factor (GDNF) signaling pathway and “pre-conditions” the injured cells into an active growth state, enhancing growth of their centrally projecting axons. Here, we show that pre-conditioning DRG neurons prior to culturing increased neurite outgrowth, which was further enhanced by GDNF in a bell-shaped growth response curve. In vivo, GDNF delivered directly to DRG cell bodies facilitated the pre-conditioning effect, further enhancing axonal regeneration beyond spinal cord lesions. Consistent with the in vitro results, the in vivo effect was seen only at low GDNF concentrations. We conclude that peripheral nerve injury upregulates GDNF signaling pathway components and that exogenous GDNF treatment selectively promotes axonal growth of injury-primed sensory neurons in a concentration-dependent fashion

    Leukemia Inhibitory Factor Is an Anti-Inflammatory and Analgesic Cytokine

    Get PDF
    The mRNA for leukemia inhibitory factor (LIF), a neuroimmune signaling molecule, is elevated during skin inflammation produced by intraplantar injection of complete Freund’s adjuvant (CFA). Moreover, although LIF knock-out mice display normal sensitivity to cutaneous mechanical and thermal stimulation compared with wild-type mice, the degree of CFA-induced inflammation in mice lacking LIF is enhanced in spatial extent, amplitude, cellular infiltrate, and interleukin (IL)-1β and nerve growth factor (NGF) expression. Conversely, local injection of low doses of recombinant LIF diminishes mechanical and thermal hypersensitivity as well as the IL-1β and NGF expression induced by CFA. These data show that upregulation of LIF during peripheral inflammation serves a key, early anti-inflammatory role and that exogenous LIF can reduce inflammatory hyperalgesia

    Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Get PDF
    BACKGROUND: Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG) 3 days following sciatic nerve transection (axotomy). Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. RESULTS: Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P < 0.05 significance threshold for detecting regulated genes, despite the large number of hypothesis tests required. For the naïve versus axotomy comparison, a 2-fold cut off alone led to an estimated error rate of 16%; combining a >1.5-fold expression change and P < 0.05 significance reduced the estimated error to 5%. The 2-fold cut off identified 178 genes while the combined >1.5-fold and P < 0.05 criteria generated 240 putatively regulated genes, which we have listed. Many of these have not been described as regulated in the DRG by axotomy. Northern blot, quantitative slot blots and in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r(2 )= 0.8567). Temporal patterns of individual genes regulation varied. CONCLUSIONS: We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission

    The Short-Term Effect of Video Editing Pace on Children’s Inhibition and N2 and P3 ERP Components during Visual Go/No-Go Task

    Get PDF
    We investigated the immediate consequences of differently paced videos on behaviour and neural activity during response inhibition. Forty 7-year-olds watched a fast- or slow-paced video and completed a go/no-go task. Compared to the slow-paced-video group, children in the fast-paced-video group made more no-go errors. There was also an interaction between pace and no-go response type (correct, wrong) for the N2 and P3 peak latencies. In the slow-paced group, both components peaked earlier for correct response withholds. This usual pattern of activation was absent in the fast-paced group. Video pace appears to affect behaviour and the neural responses involved in inhibition

    The SH3 domain of postsynaptic density 95 mediates inflammatory pain through phosphatidylinositol-3-kinase recruitment

    Get PDF
    Sensitization to inflammatory pain is a pathological form of neuronal plasticity that is poorly understood and treated. Here we examine the role of the SH3 domain of postsynaptic density 95 (PSD95) by using mice that carry a single amino-acid substitution in the polyproline-binding site. Testing multiple forms of plasticity we found sensitization to inflammation was specifically attenuated. The inflammatory response required recruitment of phosphatidylinositol-3-kinase-C2α to the SH3-binding site of PSD95. In wild-type mice, wortmannin or peptide competition attenuated the sensitization. These results show that different types of behavioural plasticity are mediated by specific domains of PSD95 and suggest novel therapeutic avenues for reducing inflammatory pain
    corecore