9,348 research outputs found

    Evaluating Rapid Application Development with Python for Heterogeneous Processor-based FPGAs

    Full text link
    As modern FPGAs evolve to include more het- erogeneous processing elements, such as ARM cores, it makes sense to consider these devices as processors first and FPGA accelerators second. As such, the conventional FPGA develop- ment environment must also adapt to support more software- like programming functionality. While high-level synthesis tools can help reduce FPGA development time, there still remains a large expertise gap in order to realize highly performing implementations. At a system-level the skill set necessary to integrate multiple custom IP hardware cores, interconnects, memory interfaces, and now heterogeneous processing elements is complex. Rather than drive FPGA development from the hardware up, we consider the impact of leveraging Python to ac- celerate application development. Python offers highly optimized libraries from an incredibly large developer community, yet is limited to the performance of the hardware system. In this work we evaluate the impact of using PYNQ, a Python development environment for application development on the Xilinx Zynq devices, the performance implications, and bottlenecks associated with it. We compare our results against existing C-based and hand-coded implementations to better understand if Python can be the glue that binds together software and hardware developers.Comment: To appear in 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM'17

    Design of crystal-like aperiodic solids with selective disorder--phonon coupling

    Get PDF
    Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic "procrystalline" solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood "waterfall" effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.Comment: 4 figure

    Mathematical Modelling of Tyndall Star Initiation

    Full text link
    The superheating that usually occurs when a solid is melted by volumetric heating can produce irregular solid-liquid interfaces. Such interfaces can be visualised in ice, where they are sometimes known as Tyndall stars. This paper describes some of the experimental observations of Tyndall stars and a mathematical model for the early stages of their evolution. The modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic kinetic undercooling at the interface; it leads to an interesting class of free boundary problems that treat the melt region as infinitesimally thin

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    Phonon broadening from supercell lattice dynamics: random and correlated disorder

    Get PDF
    We demonstrate how supercell implementations of conventional lattice dynamical calculations can be used to determine the extent and nature of disorder-induced broadening in the phonon dispersion spectrum of disordered crystalline materials. The approach taken relies on band unfolding, and is first benchmarked against virtual crystal approximation phonon calculations. The different effects of mass and interaction disorder on the phonon broadening are then presented, focussing on the example of a simple cubic binary alloy. For the mass disorder example, the effect of introducing correlated disorder is also explored by varying the fraction of homoatomic and heteroatomic neighbours. Systematic progression in the degree of phonon broadening, on the one hand, and the form of the phonon dispersion curves from primitive to face-centered cubic type, on the other hand, is observed as homoatomic neighbours are disfavoured. The implications for rationalising selection rule violations in disordered materials and for using inelastic neutron scattering measurements as a means of characterising disorder are discussed.Comment: 6 pages, 3 figure

    Service-Learning as a Practical Approach to Teaching Auditing

    Get PDF
    Business pedagogy can be more effective for students and business through a hands-on, practical approach rather than traditional lectures. The Pathways Commission of the AICPA and AAA recommended we “develop curriculum models, engaging learning resources, and mechanisms for easily sharing them as well as enhancing faculty development opportunities in support of sustaining a robust curriculum” (American Accounting Association 2012 p. 12; Hawawini 2005). In this article, we present a method to teach auditing. We identify a few articles integrating service-learning opportunities into a business school environment (Tonge and Willett 2012; Govekar and Rishi 2007). Our student teams performed agreed-upon procedures at three small churches. Qualitative data from both students and church personnel support this pedagogy. We develop practical implications for upper-level undergraduate business courses

    Detection of continuous variable entanglement without coherent local oscillators

    Get PDF
    We propose three criteria for identifying continuous variable entanglement between two many-particle systems with no restrictions on the quantum state of the local oscillators used in the measurements. Mistakenly asserting a coherent state for the local oscillator can lead to incorrectly identifying the presence of entanglement. We demonstrate this in simulations with 100 particles, and also find that large number fluctuations do not prevent the observation of entanglement. Our results are important for quantum information experiments with realistic Bose-Einstein condensates or in optics with arbitrary photon states.Comment: 7 Pages, 4 Figure

    Entanglement-free certification of entangling gates

    Get PDF
    Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be explicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.Comment: 5 pages, 2 figure
    corecore