52 research outputs found

    MINT, the molecular interaction database: 2009 update

    Get PDF
    MINT (http://mint.bio.uniroma2.it/mint) is a public repository for molecular interactions reported in peer-reviewed journals. Since its last report, MINT has grown considerably in size and evolved in scope to meet the requirements of its users. The main changes include a more precise definition of the curation policy and the development of an enhanced and user-friendly interface to facilitate the analysis of the ever-growing interaction dataset. MINT has adopted the PSI-MI standards for the annotation and for the representation of molecular interactions and is a member of the IMEx consortium

    DOMINO: a database of domain–peptide interactions

    Get PDF
    Many protein interactions are mediated by small protein modules binding to short linear peptides. DOMINO () is an open-access database comprising more than 3900 annotated experiments describing interactions mediated by protein-interaction domains. DOMINO can be searched with a versatile search tool and the interaction networks can be visualized with a convenient graphic display applet that explicitly identifies the domains/sites involved in the interactions

    MINT: the Molecular INTeraction database

    Get PDF
    The Molecular INTeraction database (MINT, ) aims at storing, in a structured format, information about molecular interactions (MIs) by extracting experimental details from work published in peer-reviewed journals. At present the MINT team focuses the curation work on physical interactions between proteins. Genetic or computationally inferred interactions are not included in the database. Over the past four years MINT has undergone extensive revision. The new version of MINT is based on a completely remodeled database structure, which offers more efficient data exploration and analysis, and is characterized by entries with a richer annotation. Over the past few years the number of curated physical interactions has soared to over 95 000. The whole dataset can be freely accessed online in both interactive and batch modes through web-based interfaces and an FTP server. MINT now includes, as an integrated addition, HomoMINT, a database of interactions between human proteins inferred from experiments with ortholog proteins in model organisms ()

    VirusMINT: a viral protein interaction database

    Get PDF
    Understanding the consequences on host physiology induced by viral infection requires complete understanding of the perturbations caused by virus proteins on the cellular protein interaction network. The VirusMINT database (http://mint.bio.uniroma2.it/virusmint/) aims at collecting all protein interactions between viral and human proteins reported in the literature. VirusMINT currently stores over 5000 interactions involving more than 490 unique viral proteins from more than 110 different viral strains. The whole data set can be easily queried through the search pages and the results can be displayed with a graphical viewer. The curation effort has focused on manuscripts reporting interactions between human proteins and proteins encoded by some of the most medically relevant viruses: papilloma viruses, human immunodeficiency virus 1, Epstein–Barr virus, hepatitis B virus, hepatitis C virus, herpes viruses and Simian virus 40

    Overview of the COVID-19 text mining tool interactive demonstration track in BioCreative VII

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has compelled biomedical researchers to communicate data in real time to establish more effective medical treatments and public health policies. Nontraditional sources such as preprint publications, i.e. articles not yet validated by peer review, have become crucial hubs for the dissemination of scientific results. Natural language processing (NLP) systems have been recently developed to extract and organize COVID-19 data in reasoning systems. Given this scenario, the BioCreative COVID-19 text mining tool interactive demonstration track was created to assess the landscape of the available tools and to gauge user interest, thereby providing a two-way communication channel between NLP system developers and potential end users. The goal was to inform system designers about the performance and usability of their products and to suggest new additional features. Considering the exploratory nature of this track, the call for participation solicited teams to apply for the track, based on their system’s ability to perform COVID-19-related tasks and interest in receiving user feedback. We also recruited volunteer users to test systems. Seven teams registered systems for the track, and >30 individuals volunteered as test users; these volunteer users covered a broad range of specialties, including bench scientists, bioinformaticians and biocurators. The users, who had the option to participate anonymously, were provided with written and video documentation to familiarize themselves with the NLP tools and completed a survey to record their evaluation. Additional feedback was also provided by NLP system developers. The track was well received as shown by the overall positive feedback from the participating teams and the users.National Institutes of Health Office of Research Infrastructure Programs (R01OD010929 to M.T. and K.D.); Canadian Institutes of Health Research (FDN-167277 to M.T.); Canada Research Chair in Systems and Synthetic Biology (to M.T.); National Institutes of Health (2U24HG007822-08, 1R35 GM141873-01 to K.E.R. and C.N.A); Spanish Plan for the Advancement of Language Technology and Proyectos I+D+i2020-AI4PROFHEALTH (PID2020-119266RA-I00 to M.K.); MITRE (W56KGU-18-D-0004 to L.H. and T.K.). The views, opinions and/or findings contained in this report are those of the authors and should not be construed as an official government position, policy or decision.Peer ReviewedPostprint (published version

    MINT and IntAct contribute to the Second BioCreative challenge: serving the text-mining community with high quality molecular interaction data

    Get PDF
    In the absence of consolidated pipelines to archive biological data electronically, information dispersed in the literature must be captured by manual annotation. Unfortunately, manual annotation is time consuming and the coverage of published interaction data is therefore far from complete. The use of text-mining tools to identify relevant publications and to assist in the initial information extraction could help to improve the efficiency of the curation process and, as a consequence, the database coverage of data available in the literature. The 2006 BioCreative competition was aimed at evaluating text-mining procedures in comparison with manual annotation of protein-protein interactions

    Text mining for the biocuration workflow

    Get PDF
    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community

    Structural and functional protein network analyses predict novel signaling functions for rhodopsin

    Get PDF
    Proteomic analyses, literature mining, and structural data were combined to generate an extensive signaling network linked to the visual G protein-coupled receptor rhodopsin. Network analysis suggests novel signaling routes to cytoskeleton dynamics and vesicular trafficking
    corecore