127 research outputs found
Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4
As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data
for cool brown dwarfs with effective temperatures less than 1000 K, we present
the discovery of three new cool brown dwarfs with spectral types later than T7.
Using low-resolution, near-infrared spectra obtained with the NASA Infrared
Telescope Facility and the Hubble Space Telescope we derive spectral types of
T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for
WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y
dwarf brings the total number of spectroscopically confirmed Y dwarfs to
seventeen. In addition, we present an improved spectrum (i.e. higher
signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms
the Cushing et al. classification of Y0. Spectrophotometric distance estimates
place all three new brown dwarfs at distances less than 12 pc, with WISE
J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note
that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the
Galactic plane offer an exciting opportunity to measure their mass via
astrometric microlensing.Comment: Accepted for publication in the Astronomical Journa
Hematology, plasma biochemistry, and hormonal analysis of captive Louisiana pine snakes (Pituophis ruthveni): effects of intrinsic factors and analytical methodology
Blood analyte data are useful in health assessments and management of reptiles. There is a knowledge gap for blood analyte data of the endangered Louisiana pine snake (LPS; Pituophis ruthveni). The objectives of this study were to provide baseline hematology, plasma biochemical, and hormone data of captive LPS, to compare the data in juvenile and adult snakes and in adult snakes by sex, and to investigate methodological differences in hormone (serum vs. plasma) and protein analyses (total solids versus total protein). Blood samples from apparently healthy captive LPS were analyzed for hematology and plasma biochemistry (n = 11) and plasma and serum hormone analyses (n = 9). Packed cell volume (PCV) and absolute heterophils were significantly higher in adult compared with juvenile LPS, while PCV, white blood cell count, and absolute lymphocytes were higher in adult males compared with adult females. Significantly higher plasma concentrations were found in adults compared with juveniles for calcium, total protein, total solids, albumin, globulins, and bile acids. No significant differences were observed in 17β-estradiol measured in serum and plasma when comparing adults and juveniles and for 17β-estradiol in adult males and females. Plasma concentrations of 17β-estradiol were significantly lower than in serum. Serum testosterone in two adult males was 8.33 and 35.53 nmol/L, respectively, while it was undetectable in females and juveniles (n = 5). This study is the first to provide baseline information on blood analytes in endangered LPS, which will be useful for individual animals in managed care and as baseline for future population-level assessments
Cysteine Modifiers Suggest an Allosteric Inhibitory Site on the CAL PDZ Domain
Protein–protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein–protein binding modules
Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates
We present Spitzer 3.6 and 4.5 m photometry and positions for a sample
of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these,
166 have been spectroscopically classified as objects with spectral types M(1),
L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature.
The remainder are most likely distant L and T dwarfs lacking spectroscopic
verification, other Y dwarf candidates still awaiting follow-up, and assorted
other objects whose Spitzer photometry reveals them to be background sources.
We present a catalog of Spitzer photometry for all astrophysical sources
identified in these fields and use this catalog to identify 7 fainter (4.5
m 17.0 mag) brown dwarf candidates, which are possibly wide-field
companions to the original WISE sources. To test this hypothesis, we use a
sample of 919 Spitzer observations around WISE-selected high-redshift
hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we
find another 6 brown dwarf candidates, suggesting that the 7 companion
candidates are not physically associated. In fact, only one of these 7 Spitzer
brown dwarf candidates has a photometric distance estimate consistent with
being a companion to the WISE brown dwarf candidate. Other than this there is
no evidence for any widely separated ( 20 AU) ultra-cool binaries. As an
adjunct to this paper, we make available a source catalog of 7.33
objects detected in all of these Spitzer follow-up fields for use
by the astronomical community. The complete catalog includes the Spitzer 3.6
and 4.5 m photometry, along with positionally matched and
photometry from USNO-B; , , and photometry from 2MASS; and ,
, , and photometry from the WISE all-sky catalog
An L Band Spectrum of the Coldest Brown Dwarf
The coldest brown dwarf, WISE 0855, is the closest known planetary-mass,
free-floating object and has a temperature nearly as cold as the solar system
gas giants. Like Jupiter, it is predicted to have an atmosphere rich in
methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint
at near-infrared wavelengths and emits almost all its energy in the
mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1
micron (M band), revealing water vapor features. Here, we present a spectrum of
WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere
models that include a range of compositions (metallicities and C/O ratios) and
water ice clouds. Methane absorption is clearly present in the spectrum. The
mid-infrared color can be better matched with a methane abundance that is
depleted relative to solar abundance. We find that there is evidence for water
ice clouds in the M band spectrum, and we find a lack of phosphine spectral
features in both the L and M band spectra. We suggest that a deep continuum
opacity source may be obscuring the near-infrared flux, possibly a deep
phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE
0855 provide critical constraints for cold planetary atmospheres, bridging the
temperature range between the long-studied solar system planets and accessible
exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs
with high-precision spectroscopy across the infrared, allowing us to study
their compositions and cloud properties, and to infer their atmospheric
dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap
A Disk Around the Planetary-Mass Companion GSC 06214-00210 b: Clues About the Formation of Gas Giants on Wide Orbits
We present Keck/OSIRIS 1.1-1.8 um adaptive optics integral field spectroscopy
of the planetary-mass companion to GSC 06214-00210, a member of the ~5 Myr
Upper Scorpius OB association. We infer a spectral type of L0+/-1, and our
spectrum exhibits multiple signs of youth. The most notable feature is
exceptionally strong PaBeta emission (EW=-11.4 +/- 0.3 A) which signals the
presence of a circumplanetary accretion disk. The luminosity of GSC 06214-00210
b combined with its age yields a model-dependent mass of 14 +/- 2 MJup, making
it the lowest-mass companion to show evidence of a disk. With a projected
separation of 320 AU, the formation of GSC 06214-00210 b and other very
low-mass companions on similarly wide orbits is unclear. One proposed mechanism
is formation at close separations followed by planet-planet scattering to much
larger orbits. Since that scenario involves a close encounter with another
massive body, which is probably destructive to circumplanetary disks, it is
unlikely that GSC 06214-00210 b underwent a scattering event in the past. This
implies that planet-planet scattering is not solely responsible for the
population of gas giants on wide orbits. More generally, the identification of
disks around young planetary companions on wide orbits offers a novel method to
constrain the formation pathway of these objects, which is otherwise
notoriously difficult to do for individual systems. We also refine the spectral
type of the primary from M1 to K7 and detect a mild (2-sigma) excess at 22 um
using WISE photometry.Comment: 25 pages, 13 figures; Accepted by Ap
Prospecting in ultracool dwarfs : Measuring the metallicities of mid- and late-m dwarfs
© 2014. The American Astronomical Society. All rights reserved.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ∼ 2000) K-band (≃ 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ∼0.07 dex for M4.5-M9.5 dwarfs with -0.58 <[Fe/H] <+0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Peer reviewe
Magnetic inflation and Stellar Mass. II. On the radii of wingle, rapidly rotating, fully convective M-dwarf stars
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their distribution. We combine photometric rotation periods from the literature with rotational broadening () measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 \% \mbox{--}15{ \% }_{-2.5}^{+3}, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.The authors would like to thank the referee for the thoughtful report, which greatly improved the manuscript. The authors would also like to thank Lisa Prato and Larissa Nofi for IGRINS training, and Heidi Larson, Jason Sanborn, and Andrew Hayslip for operating the DCT during our observations. We would also like to thank Jen Winters, Jonathan Irwin, Paul Dalba, Mark Veyette, Eunkyu Han, and Andrew Vanderburg for useful discussions and helpful comments on this work. Some of this work was supported by the NASA Exoplanet Research Program (XRP) under grant No. NNX15AG08G issued through the Science Mission Directorate.These results made use of the Lowell Observatory's Discovery Channel Telescope, supported by Discovery Communications, Inc., Boston University, the University of Maryland, the University of Toledo and Northern Arizona University; the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI; data taken at The McDonald Observatory of The University of Texas at Austin; and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. (NNX15AG08G - NASA Exoplanet Research Program (XRP); Discovery Communications, Inc.; Boston University; University of Maryland; University of Toledo; Northern Arizona University; AST-1229522 - US National Science Foundation; University of Texas at Austin; Korean GMT Project of KASI; NASA; NSF
Effects of acute glucocorticoid blockade on metabolic dysfunction in patients with type 2 diabetes with and without fatty liver
To investigate the potential of therapies which reduce glucocorticoid action in patients with Type 2 diabetes we performed a randomized, double-blinded, placebo-controlled crossover study of acute glucocorticoid blockade, using the glucocorticoid receptor antagonist RU38486 (mifepristone) and cortisol biosynthesis inhibitor (metyrapone), in 14 men with Type 2 diabetes. Stable isotope dilution methodologies were used to measure the rates of appearance of glucose, glycerol, and free fatty acids (FFAs), including during a low-dose (10 mU·m −2·min−1) hyperinsulinemic clamp, and subgroup analysis was conducted in patients with high or low liver fat content measured by magnetic resonance spectroscopy (n = 7/group). Glucocorticoid blockade lowered fasting glucose and insulin levels and improved insulin sensitivity of FFA and glycerol turnover and hepatic glucose production. Among this population with Type 2 diabetes high liver fat was associated with hyperinsulinemia, higher fasting glucose levels, peripheral and hepatic insulin resistance, and impaired suppression of FFA oxidation and FFA and glycerol turnover during hyperinsulinemia. Glucocorticoid blockade had similar effects in those with and without high liver fat. Longer term treatments targeting glucocorticoid action may be useful in Type 2 diabetes with and without fatty liver
The First Hyper-luminous Infrared Galaxy Discovered by WISE
We report the discovery by the Wide-field Infrared Survey Explorer (WISE) of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 μm and well detected at 12 or 22 μm). The WISE data and a 350 μm detection give a minimum bolometric luminosity of 3.7 × 10^(13) L_☉, with ~10^(14) L_☉ plausible. Follow-up images reveal four nearby sources: a QSO and two Lyman break galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 M_☉ yr^(–1), accounting for ≲ 10% of the bolometric luminosity. Strong 22 μm emission relative to 350 μm implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10 times above the far-infrared/radio correlation, indicating an active galactic nucleus (AGN) is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M BH-bulge mass relation, the implied Eddington ratio is ≳ 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation
- …