45 research outputs found
Calbindin-D32k Is Localized to a Subpopulation of Neurons in the Nervous System of the Sea Cucumber Holothuria glaberrima (Echinodermata)
Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin 2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous system of invertebrates
Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry
The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
Regulation of the L-type Ca2+ channel during cardiomyogenesis: switch from NO to adenylyl cyclase-mediated inhibition
In adult mammalian cardiomyocytes, stimulation of muscarinic receptors counterbalances the beta-adrenoceptor-mediated increase in myocardial contractility and heart rate by decreasing the L-type Ca2+ current (ICa) (1, 2). This effect is mediated via inhibition of adenylyl cyclase and subsequent reduction of cAMP-dependent phosphorylation of voltage-dependent L-type Ca2+ channels (3). Little is known, however, about the nature and origin of this pivotal inhibitory pathway. Using embryonic stem cells as an in vitro model of cardiomyogenesis, we found that muscarinic agonists depress ICa by 58 +/-3% (n=34) in early stage cardiomyocytes lacking functional beta-adrenoceptors. The cholinergic inhibition is mediated by the nitric oxide (NO)/cGMP system since it was abolished by application of NOS inhibitors (L-NMA, L-NAME), an inhibitor of the soluble guanylyl cyclase (ODQ), and a selective phosphodiesterase type II antagonist (EHNA). The NO/cGMP-mediated ICa depression was dependent on a reduction of cAMP/protein kinase A (PKA) levels since application of the catalytic subunit of PKA or of the PKA inhibitor PK) prevented the carbachol effect. In late development stage cells, as reported for ventricular cardiomyocytes (2, 4), muscarinic agonists had no effect on basal ICa but antagonized beta-adrenoceptor-stimulated ICa by 43 +/-4% (n=16). This switch in signaling pathways during development is associated with distinct changes in expression of the two NO-producing isoenzymes, eNOS and iNOS, respectively. These findings indicate a fundamental role for NO as a signaling molecule during early embryonic development and demonstrate a switch in the signaling cascades governing ICa regulation