4 research outputs found

    Compressive 3D ultrasound imaging using a single sensor

    Get PDF
    Three-dimensional ultrasound is a powerful imaging technique, but it requires thousands of sensors and complex hardware. Very recently, the discovery of compressive sensing has shown that the signal structure can be exploited to reduce the burden posed by traditional sensing requirements. In this spirit, we have designed a simple ultrasound imaging device that can perform three-dimensional imaging using just a single ultrasound sensor. Our device makes a compressed measurement of the spatial ultrasound field using a plastic aperture mask placed in front of the ultrasound sensor. The aperture mask ensures that every pixel in the image is uniquely identifiable in the compressed measurement. We demonstrate that this device can successfully image two structured objects placed in water. The need for just one sensor instead of thousands paves the way for cheaper, faster, simpler, and smaller sensing devices and possible new clinical applications

    Platform for Analysis and Labeling of Medical Time Series

    No full text
    Reliable and diverse labeled reference data are essential for the development of high-quality processing algorithms for medical signals, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Here, we present the Platform for Analysis and Labeling of Medical time Series (PALMS) designed in Python. Its graphical user interface (GUI) facilitates three main types of manual annotations—(1) fiducials, e.g., R-peaks of ECG; (2) events with an adjustable duration, e.g., arrhythmic episodes; and (3) signal quality, e.g., data parts corrupted by motion artifacts. All annotations can be attributed to the same signal simultaneously in an ergonomic and user-friendly manner. Configuration for different data and annotation types is straightforward and flexible in order to use a wide range of data sources and to address many different use cases. Above all, configuration of PALMS allows plugging-in existing algorithms to display outcomes of automated processing, such as automatic R-peak detection, and to manually correct them where needed. This enables fast annotation and can be used to further improve algorithms. The GUI is currently complemented by ECG and PPG algorithms that detect characteristic points with high accuracy. The ECG algorithm reached 99% on the MIT/BIH arrhythmia database. The PPG algorithm was validated on two public databases with an F1-score above 98%. The GUI and optional algorithms result in an advanced software tool that allows the creation of diverse reference sets for existing datasets

    Interpretable Assessment of ST-Segment Deviation in ECG Time Series

    Get PDF
    Nowadays, even with all the tremendous advances in medicine and health protocols, cardiovascular diseases (CVD) continue to be one of the major causes of death. In the present work, we focus on a specific abnormality: ST-segment deviation, which occurs regularly in highperformance athletes and elderly people, serving as a myocardial infarction (MI) indicator. It is usually diagnosed manually by experts, through visual interpretation of the printed electrocardiography (ECG) signal. We propose a methodology to detect ST-segment deviation and quantify its scale up to 1 mV by extracting statistical, point-to-point beat characteristics and signal quality indexes (SQIs) from single-lead ECG.We do so by applying automated machine learning methods to find the best hyperparameter configuration for classification and regression models. For validation of our method, we use the ST-T database from Physionet; the results show that our method obtains 98.30% accuracy in the case of a multiclass problem and 99.87% accuracy in the case of binarization

    Acoustical compressive 3D imaging with a single sensor

    No full text
    3D ultrasound (US) requires expensive transducers comprising thousands of elements and complicated hardware. This complexity originates from the classical idea on spatial sampling requirements for US imaging. The discovery of compressive sensing allows to ease this sampling constraint, enabling smarter ways of recording the required information. Inspired by this work we introduce a US imager that can perform 3D imaging using one acoustic sensor. Our device sends and detects US waves through a random coding mask that enables unique signals at every voxel. Rotation of the mask allows for several compressed measurements. By knowing the voxel signals, a full 3D reconstruction of the object can be obtained, as we demonstrate in this work
    corecore