4 research outputs found

    Abstract P-38: Tunable Soft Networks of Wormlike Micelles and Clay Particles

    Get PDF
    Background: Over the past few decades, there has been a great deal of interest in the aqueous self-assembly of surfactant molecules into giant wormlike micelles (WLMs). These cylindrical aggregates undergo reversible breakdown processes and in favorable cases can grow up to few tens of micrometers that is comparable with the length of high molecular weight polymer. The viscoelastic properties of WLMs can be easily modified by different additives like salts or polymers. A new emerging research area consists of tuning the WLM solution properties by inorganic nanoparticles. It suggests, in particular, the use of networks of entangled WLMs as a matrix for producing soft nanocomposites with different kinds of embedded nanoparticles that are promising for controlled release, template synthesis, and oilfield applications. These materials can combine adaptive rheological properties of the WLM matrix and the functionality of nanofiller. Methods: Rheometry and cryo-transmission electron microscopy were combined to investigate the structure and properties of mixed WLMs of zwitterionic oleylamidopropyl dimethyl betaine and anionic sodium dodecyl sulfate surfactants and platelike particles of bentonite clay. Results: This system demonstrates the formation of giant linear long-lived WLMs, which even at extremely low surfactant concentrations reach a sufficient length to entangle with each other and form a temporally persistent network. The stability of these micelles can be due to electrostatic attraction between the headgroups of the anionic and zwitterionic surfactants and favorable volume/length hydrophobic ratio in the surfactant mixture. At increasing surfactant concentration, the long-lived linear micelles transform into fast-breaking branched micelles. Stable viscoelastic suspensions of clay particles in semi-dilute solutions of WLM were elaborated. They represent a novel type of soft nanocomposite with the tunable matrix. Structural studies revealed that the clay is dispersed in a dense network of entangled WLM in the form of 100-nm tactoids. Rheological investigations demonstrated that clay particles can induce an increase of viscosity and relaxation time by up to one order of magnitude. The effect of the clay becomes more pronounced with increasing content of anionic surfactant, when the micelles become branched. This behavior was explained by the stabilization of micelle-nanoclay junction points due to the screening of the repulsion between positively charged fragments of zwitterionic head groups by added anionic surfactant. Conclusion: The pronounced effect of nanoparticles on the viscoelasticity of the network formed by branched WLMs was observed for the first time. The nanoparticles-WLM junctions were confirmed by cryo-TEM data. The elaborated systems are of interest for many industrial applications

    Microstructure and Hardness of Hollow Tube Shells at Piercing in Two-High Screw Rolling Mill with Different Plugs

    No full text
    AA6060 ingots were pierced in a two-high screw rolling mill (MISIS-130D) with guiding shoes (Mannesmann mill type). Three different plugs, i.e., a conventional entire plug, a plug with a cavity, and a hollow plug, were used for piercing. We established that the grain size decreases after piercing, by order of magnitude, compared to the initial non-pierced annealed bill, with a grain size of 100–400 μm, and the hollow shell grains are elongated along the piercing direction. The produced hollow shells had 30% higher hardness than the initial billet. The highest hardness values were obtained after piercing the conventional entire plug. The most uniform hardness distribution through the hollow shell’s volume was obtained after piercing the hollow plug. The cross and longitudinal section hardness measurements demonstrate that the hardness decreases from the outer surface to the inner surface of the hollow shells

    Printable Alginate Hydrogels with Embedded Network of Halloysite Nanotubes: Effect of Polymer Cross-Linking on Rheological Properties and Microstructure

    No full text
    Rapidly growing 3D printing of hydrogels requires network materials which combine enhanced mechanical properties and printability. One of the most promising approaches to strengthen the hydrogels consists of the incorporation of inorganic fillers. In this paper, the rheological properties important for 3D printability were studied for nanocomposite hydrogels based on a rigid network of percolating halloysite nanotubes embedded in a soft alginate network cross-linked by calcium ions. Particular attention was paid to the effect of polymer cross-linking on these properties. It was revealed that the system possessed a pronounced shear-thinning behavior accompanied by a viscosity drop of 4–5 orders of magnitude. The polymer cross-links enhanced the shear-thinning properties and accelerated the viscosity recovery at rest so that the system could regain 96% of viscosity in only 18 s. Increasing the cross-linking of the soft network also enhanced the storage modulus of the nanocomposite system by up to 2 kPa. Through SAXS data, it was shown that at cross-linking, the junction zones consisting of fragments of two laterally aligned polymer chains were formed, which should have provided additional strength to the hydrogel. At the same time, the cross-linking of the soft network only slightly affected the yield stress, which seemed to be mainly determined by the rigid percolation network of nanotubes and reached 327 Pa. These properties make the alginate/halloysite hydrogels very promising for 3D printing, in particular, for biomedical purposes taking into account the natural origin, low toxicity, and good biocompatibility of both components

    Simulation of the Kinematic Condition of Radial Shear Rolling and Estimation of Its Influence on a Titanium Billet Microstructure

    No full text
    The finite element method (FEM) computer simulation of the three-high radial shear rolling of Ti-6Al-4V alloy round billets was conducted using QForm software. The simulation was performed for the MISIS-100T rolling mill’s three passes according to the following rolling route: 76 mm (the initial billet diameter) →65 mm→55 mm→48 mm (the final billet diameter). The change in the total velocity values for the points on the radius of the 48 mm diameter billet was estimated while passing the rolls’ draft. The relative increase in the accumulated strain was estimated for the same points. Then, experimental shear rolling was performed. Grain sizes of the α- and β-phases were estimated in the cross section of the final billet at the stationary stage of rolling. The grain size distribution histograms for different phases were plotted. An area was found in the billet’s cross section in which the trend of change in the total velocity of the points changed. This area represented a neutral layer between the slowing peripheral segments of the billet and the accelerating central segments of the billet. Inside this neutral layer, the limits of the cylindrical surface radius value were estimated. Experimental radial shear rolling was performed to compare the experimental rolling results (the billet microstructure investigation) with the computer simulation results. The computer simulation obtained two estimations of the radius limits: 8–16 mm (based on the analysis of the total velocity change) and 12–16 mm (based on the accumulated strain’s relative increment change). The experimental rolling obtained two more estimations of the radius limits: 8.4–19.5 mm and 11.3–19.7 mm—based on the results of the microstructure investigation. It was confirmed that varying the kinematic and deformation parameters of radial shear rolling allows regulation of the thickness of the peripheral fine-grain layer and the diameter of the central coarse-grain layer of the rolled billets
    corecore