107 research outputs found

    Non-linear Dynamics and Primordial Curvature Perturbations from Preheating

    Full text link
    In this paper I review the theory and numerical simulations of non-linear dynamics of preheating, a stage of dynamical instability at the end of inflation during which homogeneous inflaton explosively decays and deposits its energy into excitation of other matter fields. I focus on preheating in chaotic inflation models, which proceeds via broad parametric resonance. I describe a simple method to evaluate Floquet exponents, calculating stability diagrams of Mathieu and Lame equations describing development of instability in m2ϕ2m^2\phi^2 and λϕ4\lambda\phi^4 preheating models. I discuss basic numerical methods and issues, and present simulation results highlighting non-equilibrium transitions, topological defect formation, late-time universality, turbulent scaling and approach to thermalization. I explain how preheating can generate large-scale primordial (non-Gaussian) curvature fluctuations manifest in cosmic microwave background anisotropy and large scale structure, and discuss potentially observable signatures of preheating.Comment: 15 pages, 10 figures; review for CQG special issu

    A GPU-accelerated viewer for HEALPix maps

    Full text link
    HEALPix by G\'orski et. al. (2005) is de-facto standard for Cosmic Microwave Background (CMB) data storage and analysis, and is widely used in current and upcoming CMB experiments. Almost all the datasets in Legacy Archive for Microwave Background Data Analysis (LAMBDA) use HEALPix as a format of choice. Visualizing the data plays important role in research, and several toolsets were developed to do that with HEALPix maps, most notably original Fortran facilities and Python integration with healpy. With the current state of GPU performance, it is now possible to visualize extremely large maps in real time on a laptop or a tablet. HEALPix Viewer described here is developed for macOS, and takes full advantage of GPU acceleration to handle extremely large datasets in real time. It compiles natively on Intel and Arm64 architectures, and uses Metal framework for high-performance GPU computations. The aim of this project is to reduce the effort required for interactive data exploration, as well as time overhead for producing publication-quality maps. Drag and drop integration with Keynote and Powerpoint makes creating presentations easy. The main codebase is written in Swift, a modern and efficient compiled language, with high-performance computing parts delegated entirely to GPU, and a few inserts in C interfacing to cfitsio library for I/O. Graphical user interface is written in SwiftUI, a new declarative UI framework based on Swift. Most common spherical projections and colormaps are supported out of the box, and the available source code makes it easy to customize the application and to add new features if desired.Comment: 10 pages; 7 figure

    Is It Really Naked? On Cosmic Censorship in String Theory

    Full text link
    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the `no black hole' argument breaks.Comment: 8 pages, 5 figures, 1 table; REVTeX 4.
    • …
    corecore