10 research outputs found

    Increasing the energy conversion efficiency for shrouded hydrokinetic turbines using experimental analysis on a scale model

    Get PDF
    The objective of the paper is to study the influence of certain shroud types suitable for horizontal axis hydrokinetic turbines using experimental testing in order to increase the energy conversion efficiency. The scale model of the shrouded hydrokinetic turbine is tested on a dedicated experimental bench for axial hydraulic turbine models. Two types of shrouds were tested in order to be compared: convergent shroud and divergent shroud. The rotor and shroud were made using 3D printer technology and were tested at a water velocity of 0.9 m/s on the closed-circuit testing bench. The testing facility allows the determination of the power extracted for each shroud at five distinct positions. Thus, the rotor can be moved within the shroud from inlet to outlet in order to establish the proper operating position. The mechanical power is measured using a torque transducer and an electromagnetic particle brake. The testing results will be analysed based on the variation of power curves obtained for different shroud types and operating positions. The optimum design and the best operating position will be recommended by comparing the testing result with the data collected from the bare turbine using the same rotor placed directly in free flow

    Efficient energy use and storage practices within residential facilities for compliance with the nZEB criteria

    Get PDF
    Solar energy, today, is the leader in renewable energy and the world's increasing new energy source. In 2016, for the first time, newly installed photovoltaic capacity has increased by more than 50%, exceeding the new coal-fired power stations capacity established worldwide. At the beginning of the year, the European Parliament agreed the target that 35% renewable sources by 2030. Studies show that by 2050 approximately 45% of all the households in the EU could produce their own renewable energy and more than a third of them could be part of a renewable energy cooperative, despite the worries of the distribution companies. Furthermore, the EPBD directive (EU) - Energy Performance of Buildings pushes towards new and more performing buildings - nearly zero energy buildings (nZEB) - where energy efficiency and energy flexibility are essential to achieve the required performance targets. Nearly zero-energy buildings (NZEBs) have very high energy performance and could be achieved through the integration of renewable and decentralized energy sources, continuous grid optimization and the inclusion of increasing numbers of consumers becoming producers, so called prosumers. So far, the photovoltaic system is the single technology that can combine data from utility networks with household consumption and therefore should be considered a starting point for streamlining the electricity consumption and production which will be imposed by strict regulations

    Analysis of a low-voltage operating microgrid located in a residential area

    Get PDF
    The paper aims at providing the analysis of domestic energy generation and consumption within residential areas. The topic of this study is twofold: theoretical and experimental by addressing aspects related to the operation of a microgrid connected to the low-voltage distribution grid. In order to achieve the power quality analysis for various scenarios, an appropriate testing stand was developed by using the Chauvin Arnoux CA 8435 analyser. There is envisaged the modelling and design of a mixed microgrid characterized by two line sections established by three main energy consumption nodes. There have been integrated several connection points related to the distributed generation sources and to the photovoltaic power plants, respectively, and also several supply points for the household end-users. 13 operation scenarios have been developed and recorded by analysing the voltage variation within the microgrid. Furthermore, the paper envisages the stabilization impact of the microgrid voltage variation in the presence of distributed generation sources

    Interplay between Hypoxia, Inflammation and Adipocyte Remodeling in the Metabolic Syndrome

    Get PDF
    Obesity, a major social and health problem in many countries, is due to the accumulation of white adipose tissue in subcutaneous and visceral depots. The discovery of adipocytes capacity of synthesis of numerous adipocytokines and growth factors and the cross talk between adipocytes and cells of the adipose stromo-vascular fraction had highlighted the role of adipose tissue dysfunction in obesity. In visceral obesity the unbalanced synthesis of pro- and anti-inflammatory adipocytokines contributes to the development of the metabolic syndrome which cumulates the factors that increase the risk for ischemic heart disease and cerebral stroke. Adipose tissue accumulation is associated with a state of chronic inflammation, and local hypoxia is considered its underlying cause due to the hypertrophic or/and the hyperplasic growth of the fat pad. Adipose tissue hypoxia is one of the first pathophysiological changes and was placed as a missing link between obesity and low-grade inflammation present in the metabolic syndrome. Hypoxia is a major trigger for adipose tissue remodeling including adipocyte death, inflammation, tissue fibrosis, and angiogenesis. Recently, the role of hypoxia in brown adipose tissue dysfunction, a tissue presumed as the biologic counterbalance of the metabolic disturbances in human obesity, is discussed

    Dedicated bifurcation analysis: basic principles

    Get PDF
    Over the last several years significant interest has arisen in bifurcation stenting, in particular stimulated by the European Bifurcation Club. Traditional straight vessel analysis by QCA does not satisfy the requirements for such complex morphologies anymore. To come up with practical solutions, we have developed two models, a Y-shape and a T-shape model, suitable for bifurcation QCA analysis depending on the specific anatomy of the coronary bifurcation. The principles of these models are described in this paper, as well as the results of validation studies carried out on clinical materials. It can be concluded that the accuracy, precision and applicability of these new bifurcation analyses are conform the general guidelines that have been set many years ago for conventional QCA-analyses

    Increasing the energy conversion efficiency for shrouded hydrokinetic turbines using experimental analysis on a scale model

    No full text
    The objective of the paper is to study the influence of certain shroud types suitable for horizontal axis hydrokinetic turbines using experimental testing in order to increase the energy conversion efficiency. The scale model of the shrouded hydrokinetic turbine is tested on a dedicated experimental bench for axial hydraulic turbine models. Two types of shrouds were tested in order to be compared: convergent shroud and divergent shroud. The rotor and shroud were made using 3D printer technology and were tested at a water velocity of 0.9 m/s on the closed-circuit testing bench. The testing facility allows the determination of the power extracted for each shroud at five distinct positions. Thus, the rotor can be moved within the shroud from inlet to outlet in order to establish the proper operating position. The mechanical power is measured using a torque transducer and an electromagnetic particle brake. The testing results will be analysed based on the variation of power curves obtained for different shroud types and operating positions. The optimum design and the best operating position will be recommended by comparing the testing result with the data collected from the bare turbine using the same rotor placed directly in free flow

    Efficient energy use and storage practices within residential facilities for compliance with the nZEB criteria

    No full text
    Solar energy, today, is the leader in renewable energy and the world's increasing new energy source. In 2016, for the first time, newly installed photovoltaic capacity has increased by more than 50%, exceeding the new coal-fired power stations capacity established worldwide. At the beginning of the year, the European Parliament agreed the target that 35% renewable sources by 2030. Studies show that by 2050 approximately 45% of all the households in the EU could produce their own renewable energy and more than a third of them could be part of a renewable energy cooperative, despite the worries of the distribution companies. Furthermore, the EPBD directive (EU) - Energy Performance of Buildings pushes towards new and more performing buildings - nearly zero energy buildings (nZEB) - where energy efficiency and energy flexibility are essential to achieve the required performance targets. Nearly zero-energy buildings (NZEBs) have very high energy performance and could be achieved through the integration of renewable and decentralized energy sources, continuous grid optimization and the inclusion of increasing numbers of consumers becoming producers, so called prosumers. So far, the photovoltaic system is the single technology that can combine data from utility networks with household consumption and therefore should be considered a starting point for streamlining the electricity consumption and production which will be imposed by strict regulations

    Differentiation of Endometriomas from Ovarian Hemorrhagic Cysts at Magnetic Resonance: The Role of Texture Analysis

    No full text
    Background and Objectives: To assess ovarian cysts with texture analysis (TA) in magnetic resonance (MRI) images for establishing a differentiation criterion for endometriomas and functional hemorrhagic cysts (HCs) that could potentially outperform their classic MRI diagnostic features. Materials and Methods: Forty-three patients with known ovarian cysts who underwent MRI were retrospectively included (endometriomas, n = 29; HCs, n = 14). TA was performed using dedicated software based on T2-weighted images, by incorporating the whole lesions in a three-dimensional region of interest. The most discriminative texture features were highlighted by three selection methods (Fisher, probability of classification error and average correlation coefficients, and mutual information). The absolute values of these parameters were compared through univariate, multivariate, and receiver operating characteristic analyses. The ability of the two classic diagnostic signs (“T2 shading” and “T2 dark spots”) to diagnose endometriomas was assessed by quantifying their sensitivity (Se) and specificity (Sp), following their conventional assessment on T1-and T2-weighted images by two radiologists. Results: The diagnostic power of the one texture parameter that was an independent predictor of endometriomas (entropy, 75% Se and 100% Sp) and of the predictive model composed of all parameters that showed statistically significant results at the univariate analysis (100% Se, 100% Sp) outperformed the ones shown by the classic MRI endometrioma features (“T2 shading”, 75.86% Se and 35.71% Sp; “T2 dark spots”, 55.17% Se and 64.29% Sp). Conclusion: Whole-lesion MRI TA has the potential to offer a superior discrimination criterion between endometriomas and HCs compared to the classic evaluation of the two lesions’ MRI signal behaviors

    Analysis of a low-voltage operating microgrid located in a residential area

    No full text
    The paper aims at providing the analysis of domestic energy generation and consumption within residential areas. The topic of this study is twofold: theoretical and experimental by addressing aspects related to the operation of a microgrid connected to the low-voltage distribution grid. In order to achieve the power quality analysis for various scenarios, an appropriate testing stand was developed by using the Chauvin Arnoux CA 8435 analyser. There is envisaged the modelling and design of a mixed microgrid characterized by two line sections established by three main energy consumption nodes. There have been integrated several connection points related to the distributed generation sources and to the photovoltaic power plants, respectively, and also several supply points for the household end-users. 13 operation scenarios have been developed and recorded by analysing the voltage variation within the microgrid. Furthermore, the paper envisages the stabilization impact of the microgrid voltage variation in the presence of distributed generation sources

    New Type of Linear Magnetostrictive Motor Designed for Outer Space Applications, from Concept to End-Product

    No full text
    The use of the linear magnetostrictive motor (LMM) in outer space, in the absence of Earth’s gravitational field and where extreme temperatures manifest, involves innovative technical solutions that result in significant construction changes. This paper highlights these constructive changes and presents the mathematical modeling followed by the numerical simulation of different operating regimes of LMM. The novelty of the design resides in using a bias coil instead, in addition to permanent magnets, to magnetize the magnetostrictive core and pulse width modulated (PWM) power sources to control the two coils of the LMM (bias and activation). The total absorbed current is less than 2 A, which results in the reduction of Joule losses. Moreover, a PWM source is provided to power and control a set of three Peltier elements aimed at cooling the device. The experiments validate the design of the LMM, which elicits it to power and control devices that may modulate fuel injection for rocket engines or for machines used to adjust positioning on circumterrestrial orbits
    corecore