3 research outputs found

    Advanced Trends in Metallurgy and Weldability of High-Strength Cold-Resistant and Cryogenic Steels

    No full text
    Thermomechanical Controlled Processing (TMCP), the initial microstructure and mechanical properties of rolled products made of high-strength steels, have a significant influence on the properties and reliability of welded structures for low temperature and cryogenic service. This paper systematizes advanced research trends in the field of metallurgy and weldability of high-strength cold-resistant and cryogenic steels. The classification and properties of high-strength steels are given and TMCP diagrams and phase transformations are considered. Modern methods of improving the viscoplasticity of rolled steel and welded joints are analyzed. The problems of the weldability of high-strength steels are reduction of impact toughness at low temperatures, hydrogen embrittlement, anisotropy, and softening of welded joints in the heat-affected zone. The authors propose a systemic concept and methods for improving the metallurgy and weldability of high-strength steels for low temperature and cryogenic service

    Advanced Trends in Metallurgy and Weldability of High-Strength Cold-Resistant and Cryogenic Steels

    No full text
    Thermomechanical Controlled Processing (TMCP), the initial microstructure and mechanical properties of rolled products made of high-strength steels, have a significant influence on the properties and reliability of welded structures for low temperature and cryogenic service. This paper systematizes advanced research trends in the field of metallurgy and weldability of high-strength cold-resistant and cryogenic steels. The classification and properties of high-strength steels are given and TMCP diagrams and phase transformations are considered. Modern methods of improving the viscoplasticity of rolled steel and welded joints are analyzed. The problems of the weldability of high-strength steels are reduction of impact toughness at low temperatures, hydrogen embrittlement, anisotropy, and softening of welded joints in the heat-affected zone. The authors propose a systemic concept and methods for improving the metallurgy and weldability of high-strength steels for low temperature and cryogenic service

    Modeling of Hydrogen Diffusion in Inhomogeneous Steel Welded Joints

    No full text
    Hydrogen is a main factor in cold cracking or hydrogen-induced cracking. The most crack susceptible region of a steel welded joint is the heat affected zone (HAZ). The formulation and functional-analytical solution of the one-dimensional problem of hydrogen diffusion in an inhomogeneous butt-welded joint considering weld and joint dimensions and initial hydrogen distribution as well as hydrogen diffusion coefficients and solubilities are presented. It is shown that the peak hydrogen concentration in the HAZ of inhomogeneous joints varies in direct proportion to the initial hydrogen concentration in the weld metal. It is inversely proportional to the ratio of hydrogen solubilities in the weld metal and the HAZ metal and is nonlinear in the diffusion coefficient ratio of these metals. The peak hydrogen concentration in the HAZ can exceed 170% of the average initial concentration in the joint if martensitic steel is welded using low-carbon low-alloy welding consumables. The utilization of austenitic consumables leads to a dramatic reduction in the hydrogen concentration in the HAZ in comparison with the non-austenitic consumables. No direct relationship was found between the hydrogen concentration in the HAZ and the hydrogen evolution from the joint surface
    corecore