47 research outputs found
Inverse spin-s portrait and representation of qudit states by single probability vectors
Using the tomographic probability representation of qudit states and the
inverse spin-portrait method, we suggest a bijective map of the qudit density
operator onto a single probability distribution. Within the framework of the
approach proposed, any quantum spin-j state is associated with the
(2j+1)(4j+1)-dimensional probability vector whose components are labeled by
spin projections and points on the sphere. Such a vector has a clear physical
meaning and can be relatively easily measured. Quantum states form a convex
subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits
(j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and
(2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s
portraits. We also address an auxiliary problem of the optimum reconstruction
of qudit states, where the optimality implies a minimum relative error of the
density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian
Laser Researc
Qubit portrait of the photon-number tomogram and separability of two-mode light states
In view of the photon-number tomograms of two-mode light states, using the
qubit-portrait method for studying the probability distributions with infinite
outputs, the separability and entanglement detection of the states are studied.
Examples of entangled Gaussian state and Schr\"{o}dinger cat state are
discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser
Researc