7,883 research outputs found
On the spectrum of facet crystallization waves at the smooth 4He crystal surface
The wavelike processes of crystallization and melting or crystallization
waves are well known to exist at the 4He crystal surface in the rough state.
Much less is known about crystallization waves for the 4He crystal surface in
the smooth well-faceted state below the roughening transition temperature. To
meet the lack, we analyze here the spectrum of facet crystallization waves and
its dependence upon the wavelength, perturbation amplitude, and the number of
possible facet steps distributed somehow over the wavelength. All the
distinctive features of facet crystallization waves from conventional waves at
the rough surface result from a nonanalytic cusplike behavior in the angle
dependence for the surface tension of smooth crystal facets.Comment: 7 pages, 3 figures, 1 tabl
Fine structure of the local pseudogap and Fano effect for superconducting electrons near a zigzag graphene edge
Motivated by recent scanning tunneling experiments on zigzag-terminated
graphene this paper investigates an interplay of evanescent and extended
quasiparticle states in the local density of states (LDOS) near a zigzag edge
using the Green's function of the Dirac equation. A model system is considered
where the local electronic structure near the edge influences transport of both
normal and superconducting electrons via a Fano resonance. In particular, the
temperature enhancement of the critical Josephson current and 0-pi transitions
are predicted.Comment: 5 pages, 5 figures, to be published in Phys. Rev.
On the spatial structure of the Perseids meteor stream
The analysis of radar observations of the Perseid meteor stream conducted in an ionospherical laboratory in the period from 1964 to 1981 is presented. The Perseids meteor rates were determined by the fluctuation method. Analysis of their hourly distributions showed that the stream maximum position is different for different years, i.e., the stream nodal position is constantly changing. The results of the analysis are presented and discussed
Plasmon-mediated superradiance near metal nanostructures
We develop a theory of cooperative emission of light by an ensemble of
emitters, such as fluorescing molecules or semiconductor quantum dots, located
near a metal nanostructure supporting surface plasmon. The primary mechanism of
cooperative emission in such systems is resonant energy transfer between
emitters and plasmons rather than the Dicke radiative coupling between
emitters. We identify two types of plasmonic coupling between the emitters, (i)
plasmon-enhanced radiative coupling and (ii) plasmon-assisted nonradiative
energy transfer, the competition between them governing the structure of system
eigenstates. Specifically, when emitters are removed by more than several nm
from the metal surface, the emission is dominated by three superradiant states
with the same quantum yield as a single emitter, resulting in a drastic
reduction of ensemble radiated energy, while at smaller distances cooperative
behavior is destroyed by nonradiative transitions. The crossover between two
regimes can be observed in distance dependence of ensemble quantum efficiency.
Our numerical calculations incorporating direct and plasmon-assisted
interactions between the emitters indicate that they do not destroy the
plasmonic Dicke effect.Comment: 12 pages, 10 figure
Two-photon correlations as a sign of sharp transition in quark-gluon plasma
The photon production arising due to time variation of the medium has been
considered. The Hamilton formalism for photons in time-variable medium (plasma)
has been developed with application to inclusive photon production. The results
have been used for calculation of the photon production in the course of
transition from quark-gluon phase to hadronic phase in relativistic heavy ion
collisions. The relative strength of the effect as well as specific two- photon
correlations have been evaluated. It has been demonstrated that the opposite
side two-photon correlations are indicative of the sharp transition from the
quark-gluon phase to hadrons.Comment: 23 pages, 2 figure
Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems
A diagrammatic method is presented for averaging over the circular ensemble
of random-matrix theory. The method is applied to phase-coherent conduction
through a chaotic cavity (a ``quantum dot'') and through the interface between
a normal metal and a superconductor.Comment: 37 pages RevTeX, 21 postscript figures include
Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid
We present the mechanics of a model of supersolid in the frame of the
Gross-Pitaevskii equation at that do not require defects nor vacancies.
A set of coupled nonlinear partial differential equations plus boundary
conditions is derived. The mechanical equilibrium is studied under external
constrains as steady rotation or external stress. Our model displays a
paradoxical behavior: the existence of a non classical rotational inertia
fraction in the limit of small rotation speed and no superflow under small (but
finite) stress nor external force. The only matter flow for finite stress is
due to plasticity.Comment: 6 pages, 2 figure
Radiative double electron capture by bare nucleus with emission of one photon
Calculation of the cross-section for the process of double electron capture
by bare nucleus with emission of a single photon is presented. The double
electron capture is evaluated within the framework of Quantum Electrodynamics
(QED). Line-Profile Approach (LPA) is employed. Since the radiative double
electron capture is governed by the electron correlation, corrections to the
interelectron interaction were calculated with high accuracy, partly to all
orders of the perturbation theory
A quantum hydrodynamics approach to the formation of new types of waves in polarized two-dimension systems of charged and neutral particles
In this paper we explicate a method of quantum hydrodynamics (QHD) for the
study of the quantum evolution of a system of polarized particles. Though we
focused primarily on the two-dimension physical systems, the method is valid
for three-dimension and one-dimension systems too. The presented method is
based upon the Schr\"{o}dinger equation. Fundamental QHD equations for charged
and neutral particles were derived from the many-particle microscopic
Schr\"{o}dinger equation. The fact that particles possess the electric dipole
moment (EDM) was taken into account. The explicated QHD approach was used to
study dispersion characteristics of various physical systems. We analyzed
dispersion of waves in a two-dimension (2D) ion and hole gas placed into an
external electric field which is orthogonal to the gas plane. Elementary
excitations in a system of neutral polarized particles were studied for 1D, 2D
and 3D cases. The polarization dynamics in systems of both neutral and charged
particles is shown to cause formation of a new type of waves as well as changes
in the dispersion characteristics of already known waves. We also analyzed wave
dispersion in 2D exciton systems, in 2D electron-ion plasma and 2D
electron-hole plasma. Generation of waves in 3D system neutral particles with
EDM by means of the beam of electrons and neutral polarized particles is
investigated.Comment: 15 pages, 7 figure
Effect of fluctuations on the superfluid-supersolid phase transition on the lattice
We derive a controlled expansion into mean field plus fluctuations for the
extended Bose-Hubbard model, involving interactions with many neighbors on an
arbitrary periodic lattice, and study the superfluid-supersolid phase
transition. Near the critical point, the impact of (thermal and quantum)
fluctuations on top of the mean field grows, which entails striking effects,
such as negative superfluid densities and thermodynamical instability of the
superfluid phase -- earlier as expected from mean-field dynamics. We also
predict the existence of long-lived "supercooled" states with anomalously large
quantum fluctuations.Comment: 5 pages of RevTex4; as published in Physical Review
- …