26 research outputs found

    CURRENT USE OF NANOPARTICLES IN ENDODONTICS: A SYTEMATIC REVIEW

    Get PDF
    Nowadays, technology evolves very fast and we are witnesses of major changes in dentistry. Nanotechnology improved many fields of dentistry, including endodontics. In this paper, we compared different irrigants and sealers which are currently used in endodontic treatments, their advantages and disadvantages and their limitations. In the context of emerging trends of nanotechnology in all fields of dentistry, we aimed to highlight the importance of developing new irrigants and sealers improved with nanoparticles, with superior properties compared to traditional ones. As resulted from our research, the most used irrigants in endodontics (NaOCl, EDTA, CHX) possess different kinds of advantages, but none is flawless, also having some limitations. Also, every current sealer available on the market has one or more disadvantages. For this reason, nanotechnology is very welcomed in this field and different kinds of nanoparticles were proposed for their particularities in order to improve the performances of endodontic materials. We present in this work a review of the literature regarding different types of nanoparticles, their effects on endodontic microbiota and also, their particularities

    Advances in Polymer Based Composite Coatings

    No full text
    Polymer based composite coatings represent an important class of materials for various applications [...

    Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections

    No full text
    Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”

    Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections

    No full text
    Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”

    Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration

    No full text
    This work is focused on the structural and morphological investigations of polyaniline and poly(o-anisidine) polymers generated in a direct current glow discharge plasma, in the vapors of the monomers, without a buffer gas, using an oblique angle-positioned substrate configuration. By atomic force microscopy and scanning electron microscopy we identified the formation of worm-like interlinked structures on the surface of the polyaniline layers, the layers being compact in the bulk. The poly(o-anisidine) layers are flat with no kind of structures on their surfaces. By Fourier transform infrared spectroscopy we identified the main IR bands characteristic of polyaniline and poly(o-anisidine), confirming that the polyaniline chemical structure is in the emeraldine form. The IR band from 1070 cm−1 was attributed to the emeraldine salt form of polyaniline as an indication of its doping with H+. The appearance of the IR band at 1155 cm−1 also indicates the conducting protonated of polyaniline. The X-ray diffraction revealed the formation of crystalline domains embedded in an amorphous matrix within the polyaniline layers. The interchain separation length of 3.59 Å is also an indicator of the conductive character of the polymers. The X-ray diffraction pattern of poly(o-anisidine) highlights the semi-crystalline nature of the layers. The electrical conductivities of polyaniline and poly(o-anisidine) layers and their dependence with temperature are also investigated

    Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films

    No full text
    The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers

    Calcium Phosphates–Chitosan Composite Layers Obtained by Combining Radio-Frequency Magnetron Sputtering and Matrix-Assisted Pulsed Laser Evaporation Techniques

    No full text
    In this work, we report the synthesis of calcium phosphate–chitosan composite layers. Calcium phosphate layers were deposited on titanium substrates by radio-frequency magnetron sputtering technique by varying the substrate temperature from room temperature (25 °C) up to 100 and 300 °C. Further, chitosan was deposited by matrix-assisted pulsed laser evaporation technique on the calcium phosphate layers. The temperature at the substrate during the deposition process of calcium phosphate layers plays an important role in the embedding of chitosan, as scanning electron microscopy analysis showed. The degree of chitosan incorporation into the calcium phosphate layers significantly influence the physico-chemical properties and the adherence strength of the resulted layers to the substrates. For example, the decreases of Ca/P ratio at the addition of chitosan suggests that a calcium deficient hydroxyapatite structure is formed when the CaP layers are generated on Ti substrates kept at room temperature during the deposition process. The Fourier transform infrared spectroscopy analysis of the samples suggest that the PO43−/CO32− substitution is possible. The X-ray diffraction spectra indicated that the crystalline structure of the calcium phosphate layers obtained at the 300 °C substrate temperature is disturbed by the addition of chitosan. The adherence strength of the composite layers to the titanium substrates is diminished after the chitosan deposition. However, no complete exfoliation of the layers was observed

    Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments

    No full text
    An adequate simulation model has been used for the calculation of angular and energy distributions of electrons, protons, and photons emitted during a high-power laser, 5-µm thick Ag target interaction. Their energy spectra and fluencies have been calculated between 0 and 360 degrees around the interaction point with a step angle of five degrees. Thus, the contribution of each ionizing species to the total fluency value has been established. Considering the geometry of the experimental set-up, a map of the radiation dose inside the target vacuum chamber has been simulated, using the Geant4 General Particle Source code, and further compared with the experimental one. Maximum values of the measured dose of the order of tens of mGy per laser shot have been obtained in the direction normal to the target at about 30 cm from the interaction point

    Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties

    No full text
    This study aimed at developing an antimicrobial material based on hydroxyapatite (HAp) and peppermint essential oil (P-EO) in order to stimulate the antimicrobial activity of hydroxyapatite. The molecular spectral features and morphology of the P-EO, HAp and hydroxyapatite coated with peppermint essential oil (HAp-P) were analyzed using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The coating of the HAp with the P-EO did not affect the ellipsoidal shape of the nanoparticles. The overlapping of IR bands of P-EO and HAp in the HAp-P spectrum determined the formation of the broad molecular bands that were observed in the spectral regions of 400–1000 cm−1 and 1000–1200 cm−1. The antibacterial activity of the P-EO, HAp and HAp-P were also tested against different Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) 388, S. aureus ATCC 25923, S. aureus ATCC 6538, E. faecium DSM 13590), Gram-negative bacteria (Escherichia coli ATCC 25922, E. coli C5, P. aeruginosa ATCC 27853, P. aeruginosa ATCC 9027) and a fungal strain of Candida parapsilosis. The results of the present study revealed that the antimicrobial activity of HAp-P increased significantly over that of HAp
    corecore