73 research outputs found
Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device
A recently proposed face-sheet/core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test (STT) configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and arrest of the crack. Digital image correlation is used through the duration of the fatigue experiment to track the strain evolution as the crack tip advances. The measured strains are related to crack tip propagation, arrest, and re-initiation of the crack. A finite element model is used to calculate the energy release rate, mode mixity and to simulate crack propagation and arrest of the crack. Finally the effectiveness of the crack arresting device is demonstrated on composite sandwich beams subjected to fatigue loading conditions
Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device
A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and arrest of the crack. Digital image correlation is used through the duration of the fatigue experiment to track the strain evolution as the crack tip advances. The measured strains are related to crack tip propagation, arrest, and re-initiation of the crack. A finite element model is used to calculate the energy release rate, mode mixity and to simulate crack propagation and arrest of the crack. Finally, the effectiveness of the crack arresting device is demonstrated on composite sandwich beams subjected to fatigue loading conditions
Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device - Numerical modelling
A novel crack arresting device is implemented in foam cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A Finite Element Model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experimental fatigue test study. Based on a linear elastic fracture mechanics approach, the developed FE model is utilized to simulate crack propagation and arrest in foam cored sandwich beam specimens subjected to fatigue loading conditions. The effect of the crack arresters on the fatigue life is analysed, and the predictive results are subsequently compared with the observations from the previously conducted fatigue tests. The FE model predicts the energy release rate and the mode mixity based on the derived crack surface displacements, utilizing algorithms for the prediction of accelerated fatigue crack growth as well as the strain field evolution in the vicinity of the crack tip on the surface of the sandwich specimens. It is further shown that the developed finite element analysis methodology can be used to gain a deeper insight onto the physics and behavioral characteristics of the novel peel stopper concept, as well as a design tool that can be used for the implementation of crack arresting devises in engineering applications of sandwich components and structures
Combining robotics and functional electrical stimulation for assist-as-needed support of leg movements in stroke patients:A feasibility study
Purpose: Rehabilitation technology can be used to provide intensive training in the early phases after stroke. The current study aims to assess the feasibility of combining robotics and functional electrical stimulation (FES), with an assist-as-needed approach to support actively-initiated leg movements in (sub-)acute stroke patients. Method: Nine subacute stroke patients performed repetitions of ankle dorsiflexion and/or knee extension movements, with and without assistance. The assist-as-needed algorithm determined the amount and type of support needed per repetition. The number of repetitions and range of motion with and without assistance were compared with descriptive statistics. Fatigue scores were obtained using the visual analogue scale (score 0–10). Results: Support was required in 44 % of the repetitions for ankle dorsiflexion and in 5 % of the repetitions of knee extension, The median fatigue score was 2.0 (IQR: 0.2) and 4.0 (IQR: 1.5) for knee and ankle, respectively, indicating mild to moderate perceived fatigue. Conclusion: This study demonstrated the feasibility of assist-as-needed assistance through combined robotic and FES support of leg movements in stroke patients. It proved particularly useful for ankle dorsiflexion. Future research should focus on implementing this approach in a clinical setting, to assess clinical applicability and potential effects on leg function.</p
An intervention study to prevent relapse in patients with schizophrenia
Purpose: To determine whether the use of relapse prevention plans (RPPs) in nursing practice is an effective intervention in reducing relapse rates among patients with schizophrenia. Design and Methods: Experimental design. Patients with schizophrenia (or a related psychotic disorder) and nurses from three mental health organizations were randomly assigned to either an experimental (RPP) or control condition (care as usual). The primary outcome measure was the psychotic relapses in the research groups. Results: The relapse rates in the experimental and control groups after 1-year follow-up were 12.5% and 26.2%, respectively (p=.12, ns). The relative risk of a relapse in the experimental versus the control group was 0.48(ns). Conclusions: In this study no statistically significant effects of the intervention were found. Effectiveness research in this area should be continued with larger sample sizes and longer follow-up periods
Loss of cardiac splicing regulator RBM20 is associated with early-onset atrial fibrillation
We showed an association between atrial fibrillation and rare loss-of-function (LOF) variants in the cardiac splicing regulator RBM20 in 2 independent cohorts. In a rat model with loss of RBM20, we demonstrated altered splicing of sarcomere genes (NEXN, TTN, TPM1, MYOM1, and LDB3), and differential expression in key cardiac genes. We identified altered sarcomere and mitochondrial structure on electron microscopy imaging and found compromised mitochondrial function. Finally, we demonstrated that 3 novel LOF variants in RBM20, identified in patients with atrial fibrillation, lead to significantly reduced splicing activity. Our results implicate alternative splicing as a novel proarrhythmic mechanism in the atria
- …