4 research outputs found

    What if I Get Busted? Deception, Choice, and Decision-Making in Social Interaction

    Get PDF
    Deception is an essentially social act, yet little is known about how social consequences affect the decision to deceive. In this study, participants played a computerized game of deception without constraints on whether or when to attempt to deceive their opponent. Participants were questioned by an opponent outside the scanner about their knowledge of the content of a display. Importantly, questions were posed so that, in some conditions, it was possible to be deceptive, while in other conditions it was not. To simulate a realistic interaction, participants could be confronted about their claims by the opponent. This design, therefore, creates a context in which a deceptive participant runs the risk of being punished if their deception is detected. Our results show that participants were slower to give honest than to give deceptive responses when they knew more about the display and could use this knowledge for their own benefit. The condition in which confrontation was not possible was associated with increased activity in subgenual anterior cingulate cortex. The processing of a question which allows a deceptive response was associated with activation in right caudate and inferior frontal gyrus. Our findings suggest the decision to deceive is affected by the potential risk of social confrontation rather than the claim itself

    When Pinocchio's nose does not grow:belief regarding lie-detectability modulates production of deception

    Get PDF
    Does the brain activity underlying the production of deception differ depending on whether or not one believes their deception can be detected? To address this question, we had participants commit a mock theft in a laboratory setting, and then interrogated them while they underwent functional MRI (fMRI) scanning. Crucially, during some parts of the interrogation participants believed a lie detector was activated, whereas in other parts they were told it was switched off. We were thus able to examine the neural activity associated with the contrast between producing true versus false claims, as well as the independent contrast between believing that deception could and could not be detected. We found increased activation in the right amygdala and inferior frontal gyrus (IFG), as well as the left posterior cingulate cortex (PCC), during the production of false (compared to true) claims. Importantly, there was a significant interaction between the effects of deception and belief in the left temporal pole and right hippocampus/parahippocampal gyrus, where activity increased during the production of deception when participants believed their false claims could be detected, but not when they believed the lie detector was switched off. As these regions are associated with binding socially complex perceptual input and memory retrieval, we conclude that producing deceptive behavior in a context in which one believes this deception can be detected is associated with a cognitively taxing effort to reconcile contradictions between one’s actions and recollections

    Interaction versus Observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    Get PDF
    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an ‘understanding of the other’, or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g. someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone ‘privately’ manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants’ experience, behavior and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions

    The balanced mind: the variability of task-unrelated thoughts predicts error-monitoring

    No full text
    Self-generated thoughts unrelated to ongoing activities, also known as ‘mind-wandering’, make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internal and externally oriented thought may thus allow individuals to optimize their task performance
    corecore