8 research outputs found

    HEROHE Challenge: Predicting HER2 Status in Breast Cancer from Hematoxylin–Eosin Whole-Slide Imaging

    Get PDF
    Breast cancer is the most common malignancy in women worldwide, and is responsible for more than half a million deaths each year. The appropriate therapy depends on the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2) transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge, a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the HER2 status in breast cancer based only on hematoxylin–eosin-stained tissue samples, thus avoiding specialized techniques. The challenge consisted of a large, annotated, whole-slide images dataset (509), specifically collected for the challenge. Models for predicting HER2 status were presented by 21 teams worldwide. The best-performing models are presented by detailing the network architectures and key parameters. Methods are compared and approaches, core methodologies, and software choices contrasted. Different evaluation metrics are discussed, as well as the performance of the presented models for each of these metrics. Potential differences in ranking that would result from different choices of evaluation metrics highlight the need for careful consideration at the time of their selection, as the results show that some metrics may misrepresent the true potential of a model to solve the problem for which it was developed. The HEROHE dataset remains publicly available to promote advances in the field of computational pathology

    An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper (R)

    Get PDF
    Background: Accurate determination of the predictive markers human epidermal growth factor receptor 2 (HER2/ERBB2), estrogen receptor (ER/ESR1), progesterone receptor (PgR/PGR), and marker of proliferation Ki67 (MKI67) is indispensable for therapeutic decision making in early breast cancer. In this multicenter prospective study, we addressed the issue of inter- and intrasite reproducibility using the recently developed reverse transcription-quantitative real-time polymerase chain reaction-based MammaTyper (R) test. Methods: Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin-fixed, paraffin-embedded breast cancer specimens with the MammaTyper (R) test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs). Results: Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980-0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00. Conclusions: On the basis of these data, the MammaTyper (R) has the potential to substantially improve the current standards of breast cancer diagnostics by providing a highly precise and reproducible quantitative assessment of the established breast cancer biomarkers and molecular subtypes in a decentralized workup.Peer reviewe

    Lytic archaeal viruses infect abundant primary producers in Earth's crust.

    No full text
    The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems

    Spatio-functional organization in virocells of small uncultivated archaea from the deep biosphere.

    Get PDF
    Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells

    Spatio-functional organization in virocells of small uncultivated archaea from the deep biosphere

    Get PDF
    Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells

    Additional file 3: Figure S2. of An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper®

    No full text
    Box plots depicting interlot reproducibility. The box plots represent the distribution of the four MammaTyper® measurements of the eight RNA pool samples using two different MammaTyper® lots at one site. The box plots indicate the median 40−∆∆Cq values by the horizontal line dividing the boxes, the first and third quartiles by the lower and upper border of the boxes, and the minimum and maximum values by the whiskers. (PDF 1359 kb
    corecore