88 research outputs found

    Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae

    Get PDF
    All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae

    Nutritional Value-Dependent and Nutritional Value-Independent Effects on Drosophila melanogaster Larval Behavior

    Get PDF
    Gustatory stimuli allow an organism not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. For both mammals and insects, sugars—perceived as "sweet”—potentially predict nutritional benefit. Interestingly, even Drosophila adult flies are attracted to most high-potency sweeteners preferred by humans. However, the gustatory information of a sugar may be misleading as some sugars, although perceived as "sweet,” cannot be metabolized. Accordingly, in adult Drosophila, a postingestive system that additionally evaluates the nutritional benefit of an ingested sugar has been shown to exist. By using a set of seven different sugars, which either offer (fructose, sucrose, glucose, maltodextrin, and sorbitol) or lack (xylose and arabinose) nutritional benefit, we show that Drosophila, at the larval stage, can perceive and evaluate sugars based on both nutrition-dependent and -independent qualities. In detail, we find that larval survival and feeding mainly depend on the nutritional value of a particular sugar. In contrast, larval choice behavior and learning are regulated in a more complex way by nutrition value-dependent and nutrition value-independent information. The simplicity of the larval neuronal circuits and their accessibility to genetic manipulation may ultimately allow one to identify the neuronal and molecular basis of the larval sugar perception systems described here behaviorall

    Electric Shock-Induced Associative Olfactory Learning in Drosophila Larvae

    Get PDF
    Associative plasticity is a basic essential attribute of nervous systems. As shown by numerous reports, Drosophila is able to establish simple forms of appetitive and aversive olfactory associations at both larval and adult stages. Whereas most adult studies on aversive learning employed electric shock as a negative reinforcer, larval paradigms essentially utilized gustatory stimuli to create negative associations, a discrepancy that limits the comparison of data. To overcome this drawback, we critically revisited larval odor-electric shock conditioning. First, we show that lithium chloride (LiCl), which was used in all previous larval electric shock paradigms, is not required per se in larval odor-electric shock learning. This is of considerable practical advantage because beside its peculiar effects LiCl is attractive to larvae at low concentration that renders comparative learning studies on genetically manipulated larvae complicated. Second, we confirm that in both a 2-odor reciprocal and a 1-odor nonreciprocal conditioning regimen, larvae are able to associate an odor with electric shock. In the latter experiments, initial learning scores reach an asymptote after 5 training trials, and aversive memory is still detectable after 60 min. Our experiments provide a comprehensive basis for future comparisons of larval olfactory conditioning reinforced by different modalities, for studies aimed at analyzing odor-electric shock learning in the larva and the adult, and for investigations of the cellular and molecular substrate of aversive olfactory learning in the simple Drosophila mode

    The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning

    Get PDF
    Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful

    Four individually identified paired dopamine neurons signal reward in larval Drosophila

    Get PDF
    Dopaminergic neurons serve multiple functions, including reinforcement processing during associative learning [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12]. It is thus warranted to understand which dopaminergic neurons mediate which function. We study larval Drosophila, in which only approximately 120 of a total of 10,000 neurons are dopaminergic, as judged by the expression of tyrosine hydroxylase (TH), the rate- limiting enzyme of dopamine biosynthesis [ 5 and 13]. Dopaminergic neurons mediating reinforcement in insect olfactory learning target the mushroom bodies, a higher-order “cortical” brain region [ 1, 2, 3, 4, 5, 11, 12, 14 and 15]. We discover four previously undescribed paired neurons, the primary protocerebral anterior medial (pPAM) neurons. These neurons are TH positive and subdivide the medial lobe of the mushroom body into four distinct subunits. These pPAM neurons are acutely necessary for odor-sugar reward learning and require intact TH function in this process. However, they are dispensable for aversive learning and innate behavior toward the odors and sugars employed. Optogenetical activation of pPAM neurons is sufficient as a reward. Thus, the pPAM neurons convey a likely dopaminergic reward signal. In contrast, DL1 cluster neurons convey a corresponding punishment signal [5], suggesting a cellular division of labor to convey dopaminergic reward and punishment signals. On the level of individually identified neurons, this uncovers an organizational principle shared with adult Drosophila and mammals [ 1, 2, 3, 4, 7, 9 and 10] (but see [6]). The numerical simplicity and connectomic tractability of the larval nervous system [ 16, 17, 18 and 19] now offers a prospect for studying circuit principles of dopamine function at unprecedented resolution

    Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.

    Get PDF
    The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior

    The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Get PDF
    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed

    Taste processing in Drosophila larvae.

    Get PDF
    The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances

    Serum MicroRNA-21 as Marker for Necroinflammation in Hepatitis C Patients with and without Hepatocellular Carcinoma

    Get PDF
    Background: MicroRNA-21 (miR-21) is up-regulated in tumor tissue of patients with malignant diseases, including hepatocellular carcinoma (HCC). Elevated concentrations of miR-21 have also been found in sera or plasma from patients with malignancies, rendering it an interesting candidate as serum/plasma marker for malignancies. Here we correlated serum miR-21 levels with clinical parameters in patients with different stages of chronic hepatitis C virus infection (CHC) and CHC-associated HCC. Methodology/Principal Findings: 62 CHC patients, 29 patients with CHC and HCC and 19 healthy controls were prospectively enrolled. RNA was extracted from the sera and miR-21 as well as miR-16 levels were analyzed by quantitative real-time PCR; miR-21 levels (normalized by miR-16) were correlated with standard liver parameters, histological grading and staging of CHC. The data show that serum levels of miR-21 were elevated in patients with CHC compared to healthy controls (P<0.001); there was no difference between serum miR-21 in patients with CHC and CHC-associated HCC. Serum miR-21 levels correlated with histological activity index (HAI) in the liver (r = −0.494, P = 0.00002), alanine aminotransferase (ALT) (r = −0.309, P = 0.007), aspartate aminotransferase (r = −0.495, P = 0.000007), bilirubin (r = −0.362, P = 0.002), international normalized ratio (r = −0.338, P = 0.034) and γ-glutamyltransferase (r = −0.244, P = 0.034). Multivariate analysis revealed that ALT and miR-21 serum levels were independently associated with HAI. At a cut-off dCT of 1.96, miR-21 discriminated between minimal and mild-severe necroinflammation (AUC = 0.758) with a sensitivity of 53.3% and a specificity of 95.2%. Conclusions/Significance: The serum miR-21 level is a marker for necroinflammatory activity, but does not differ between patients with HCV and HCV-induced HCC
    corecore