3 research outputs found

    Comparison of Lifetime of the PVD Coatings in Laboratory Dynamic Impact Test and Industrial Fine Blanking Process

    No full text
    Protective hard PVD coatings are used to improve the endurance of the tools exposed to repeated impact load, e.g., fine blanking punches. During the fine blanking process, a coated punch repeatedly impacts sheet metal. Thus, the coating which protects the punch surface is exposed to the dynamic impact load. On the other hand, the laboratory method of dynamic impact testing is well known and used for the development and optimization of protective coatings. This paper is focused on the comparison of tool life and lifetime of the industrial prepared PVD coatings exposed to repeated dynamic impact load in the industrial fine blanking process and the laboratory dynamic impact testing. Three different types of protective coatings were tested and the results were discussed. It was shown that the lifetime of coated specimens in both the fine blanking and the dynamic impact processes was influenced by similar mechanical properties of the protective coatings. The qualitative comparison shows that the lifetime obtained by the dynamic impact test was the same as the lifetime obtained by the industrial fine blanking process. The laboratory impact test appears to be a suitable alternative for the optimisation and development of protective PVD coatings for punches used in the industrial fine blanking process

    High-Temperature Tribological Performance of Hard Multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN Coating Deposited on WC-Co Substrate

    No full text
    Mechanical and tribological properties of the hard-multilayer TiN-AlTiN/nACo-CrN/AlCrN-AlCrO-AlTiCrN coating deposited on WC-Co substrate were investigated. The sliding tests were carried out using ball-on-disc tribometer at room (25 °C) and high temperatures (600 and 800 °C) with Al2O3 balls as counterpart. Nano-scratch tests were performed at room temperature with a sphero-conical diamond indenter. The surface morphology and chemical composition were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and in-situ high-temperature X-ray diffraction (HT-XRD). The phase transition from fcc-(Al,Cr)2O3 into α-(Al,Cr)2O3 was observed at about 800 °C. The results of the tribological tests depends on the temperature, the lowest apparent and real wear volumes were observed on the coating after the test at 800 °C along with the smallest coefficient of friction (COF). The plastic deformation of the coating was confirmed in sliding and nano-scratch tests. The nano-scratch tests revealed the dependence of COF value on the temperature of the sliding tests

    High-Temperature Tribological Performance of Al2O3/a-C:H:Si Coating in Ambient Air

    No full text
    The study investigates thermal stability and high temperature tribological performance of a-C:H:Si diamond-like carbon (DLC) coating. A thin alumina layer was deposited on top of the a-C:H:Si coating to improve the tribological performance at high temperatures. The a-C:H:Si coating and alumina layer were prepared using plasma-activated chemical vapour deposition and atomic layer deposition, respectively. Raman and X-ray photoelectron spectroscopy were used to investigate the structures and chemical compositions of the specimens. The D and G Raman peaks due to sp2 bonding and the peaks corresponding to the trans-polyacetylene (t-Pa) and sp bonded chains were identified in the Raman spectra of the a-C:H:Si coating. Ball-on-disc sliding tests were carried out at room temperature and 400 °C using Si3N4 balls as counter bodies. The a-C:H:Si coating failed catastrophically in sliding tests at 400 °C; however, a repeatable and reproducible regime of sliding with a low coefficient of friction was observed for the Al2O3/a-C:H:Si coating at the same temperature. The presence of the alumina layer and high stress and temperature caused structural changes in the bulk a-C:H:Si and top layers located near the contact area, leading to the modification of the contact conditions, delivering of extra oxygen into the contact area, reduction of hydrogen effusion, and suppression of the atmospheric oxidation
    corecore