241 research outputs found

    A step towards understanding paper documents

    Get PDF
    This report focuses on analysis steps necessary for a paper document processing. It is divided in three major parts: a document image preprocessing, a knowledge-based geometric classification of the image, and a expectation-driven text recognition. It first illustrates the several low level image processing procedures providing the physical document structure of a scanned document image. Furthermore, it describes a knowledge-based approach, developed for the identification of logical objects (e.g., sender or the footnote of a letter) in a document image. The logical identifiers provide a context-restricted consideration of the containing text. While using specific logical dictionaries, a expectation-driven text recognition is possible to identify text parts of specific interest. The system has been implemented for the analysis of single-sided business letters in Common Lisp on a SUN 3/60 Workstation. It is running for a large population of different letters. The report also illustrates and discusses examples of typical results obtained by the system

    Self-adapting structuring and representation of space

    Get PDF
    The objective of this report is to propose a syntactic formalism for space representation. Beside the well known advantages of hierarchical data structure, the underlying approach has the additional strength of self-adapting to a spatial structure at hand. The formalism is called puzzletree because its generation results in a number of blocks which in a certain order -- like a puzzle - reconstruct the original space. The strength of the approach does not lie only in providing a compact representation of space (e.g. high compression), but also in attaining an ideal basis for further knowledge-based modeling and recognition of objects. The approach may be applied to any higher-dimensioned space (e.g. images, volumes). The report concentrates on the principles of puzzletrees by explaining the underlying heuristic for their generation with respect to 2D spaces, i.e. images, but also schemes their application to volume data. Furthermore, the paper outlines the use of puzzletrees to facilitate higher-level operations like image segmentation or object recognition. Finally, results are shown and a comparison to conventional region quadtrees is done

    Analysis and Forecasting of Trending Topics in Online Media Streams

    Full text link
    Among the vast information available on the web, social media streams capture what people currently pay attention to and how they feel about certain topics. Awareness of such trending topics plays a crucial role in multimedia systems such as trend aware recommendation and automatic vocabulary selection for video concept detection systems. Correctly utilizing trending topics requires a better understanding of their various characteristics in different social media streams. To this end, we present the first comprehensive study across three major online and social media streams, Twitter, Google, and Wikipedia, covering thousands of trending topics during an observation period of an entire year. Our results indicate that depending on one's requirements one does not necessarily have to turn to Twitter for information about current events and that some media streams strongly emphasize content of specific categories. As our second key contribution, we further present a novel approach for the challenging task of forecasting the life cycle of trending topics in the very moment they emerge. Our fully automated approach is based on a nearest neighbor forecasting technique exploiting our assumption that semantically similar topics exhibit similar behavior. We demonstrate on a large-scale dataset of Wikipedia page view statistics that forecasts by the proposed approach are about 9-48k views closer to the actual viewing statistics compared to baseline methods and achieve a mean average percentage error of 45-19% for time periods of up to 14 days.Comment: ACM Multimedia 201

    Document highlighting - message classification in printed business letters

    Get PDF
    This paper presents the INFOCLAS system applying statistical methods of information retrieval primarily for the classification of German business letters into corresponding message types such as order, offer, confirmation, etc. INFOCLAS is a first step towards understanding of documents. Actually, it is composed of three modules: the central indexer (extraction and weighting of indexing terms), the classifier (classification of business letters into given types) and the focuser (highlighting relevant letter parts). The system employs several knowledge sources including a database of about 100 letters, word frequency statistics for German, message type specific words, morphological knowledge as well as the underlying document model. As output, the system evaluates a set of weighted hypotheses about the type of letter at hand, or highlights relevant text (text focus), respectively. Classification of documents allows the automatic distribution or archiving of letters and is also an excellent starting point for higher-level document analysis
    corecore