32 research outputs found

    Local distribution approach to disordered binary alloys

    Full text link
    We study the electronic structure of the binary alloy and (quantum) percolation model. Our study is based on a self-consistent scheme for the distribution of local Green functions. We obtain detailed results for the density of states, from which the phase diagram of the binary alloy model is constructed, and discuss the existence of a quantum percolation threshold.Comment: 9 pages, 8 figures. A few minor changes, 1 figure adde

    Solution of the Holstein polaron anisotropy problem

    Full text link
    We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonalization technique we provide highly accurate results for the polaron mass and polaron radius. With these data we discuss the differences between polaron formation in dimension one and three, and at small and large phonon frequency. Varying the anisotropy we demonstrate how a polaron evolves from a one-dimensional to a three-dimensional quasiparticle. We thereby resolve the issue of polaron stability in quasi-one-dimensional substances and clarify to what extent such polarons can be described as one-dimensional objects. We finally show that even the local Holstein interaction leads to an enhancement of anisotropy in charge carrier motion.Comment: 6 pages, 7 figures; extended version accepted for publication in Phys. Rev.
    corecore