7 research outputs found
The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent
Abstract Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved
Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells
There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling) at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs) in ribosomal DNA (rDNA) and non-rDNA locations (e.g., silent replication origins and tRNA genes). The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR), which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC), likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging
Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
In wild-type Saccharomyces cerevisiae, replication forks slowed during their passage through telomeric C(1–3)A/TG(1–3) tracts. This slowing was greatly exacerbated in the absence of RRM3, shown here to encode a 5′ to 3′ DNA helicase. Rrm3p-dependent fork progression was seen at a modified Chromosome VII-L telomere, at the natural X-bearing Chromosome III-L telomere, and at Y‘-bearing telomeres. Loss of Rrm3p also resulted in replication fork pausing at specific sites in subtelomeric DNA, such as at inactive replication origins, and at internal tracts of C(1–3)A/TG(1–3) DNA. The ATPase/helicase activity of Rrm3p was required for its role in telomeric and subtelomeric DNA replication. Because Rrm3p was telomere-associated in vivo, it likely has a direct role in telomere replication
Mst1 inhibits autophagy by promoting the interaction between beclin1 and Bcl-2
Here we show that Mst1, a proapoptotic kinase, impairs protein quality control mechanisms in the heart through inhibition of autophagy. Stress-induced activation of Mst1 in cardiomyocytes promoted accumulation of p62 and aggresome formation, accompanied by the disappearance of autophagosomes. Mst1 phosphorylated the Thr108 residue in the BH3 domain of Beclin1, which enhanced the interaction between Beclin1 and Bcl-2 and/or Bcl-xL, stabilized the Beclin1 homodimer, inhibited the phosphatidylinositide 3-kinase activity of the Atg14L-Beclin1-Vps34 complex and suppressed autophagy. Furthermore, Mst1-induced sequestration of Bcl-2 and Bcl-xL by Beclin1 allows Bax to become active, thereby stimulating apoptosis. Mst1 promoted cardiac dysfunction in mice subjected to myocardial infarction by inhibiting autophagy, associated with increased levels of Thr108-phosphorylated Beclin1. Moreover, dilated cardiomyopathy in humans was associated with increased levels of Thr108-phosphorylated Beclin1 and signs of autophagic suppression. These results suggest that Mst1 coordinately regulates autophagy and apoptosis by phosphorylating Beclin1 and consequently modulating a three-way interaction among Bcl-2 proteins, Beclin1 and Bax