97 research outputs found
Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes
Metagenomic analysis typically includes read-based taxonomic profiling, assembly, and binning of metagenome-assembled genomes (MAGs). Here we integrate these steps in Read Annotation Tool (RAT), which uses robust taxonomic signals from MAGs and contigs to enhance read annotation. RAT reconstructs taxonomic profiles with high precision and sensitivity, outperforming other state-of-the-art tools. In high-diversity groundwater samples, RAT annotates a large fraction of the metagenomic reads, calling novel taxa at the appropriate, sometimes high taxonomic ranks. Thus, RAT integrative profiling provides an accurate and comprehensive view of the microbiome from shotgun metagenomics data. The package of Contig Annotation Tool (CAT), Bin Annotation Tool (BAT), and RAT is available at https://github.com/MGXlab/CAT_pack (from CAT pack v6.0). The CAT pack now also supports Genome Taxonomy Database (GTDB) annotations
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Genotype–phenotype correlations in individuals with pathogenic RERE variants
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7
Genotype–phenotype correlations in individuals with pathogenic RERE variants
Heterozygous variants in the arginine‐glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin‐1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss‐of‐function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.We describe nine unrelated individuals who carry partial deletions or putatively deleterious sequence variants in RERE. An analysis of clinical and molecular data from individuals with mutations affecting RERE suggests the existence of novel genotype‐phenotype correlations and demonstrates that a high percentage of RERE pathogenic variants affect a histidine‐rich region in the Atrophin‐1 domain. We have also identified a recurrent two‐amino‐acid duplication in this region that is associated with the development of a CHARGE syndrome‐like phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/1/humu23400_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/2/humu23400.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143789/3/humu23400-sup-0001-SuppMat.pd
Waveform Modelling for the Laser Interferometer Space Antenna
LISA, the Laser Interferometer Space Antenna, will usher in a new era in
gravitational-wave astronomy. As the first anticipated space-based
gravitational-wave detector, it will expand our view to the millihertz
gravitational-wave sky, where a spectacular variety of interesting new sources
abound: from millions of ultra-compact binaries in our Galaxy, to mergers of
massive black holes at cosmological distances; from the beginnings of inspirals
that will venture into the ground-based detectors' view to the death spiral of
compact objects into massive black holes, and many sources in between. Central
to realising LISA's discovery potential are waveform models, the theoretical
and phenomenological predictions of the pattern of gravitational waves that
these sources emit. This white paper is presented on behalf of the Waveform
Working Group for the LISA Consortium. It provides a review of the current
state of waveform models for LISA sources, and describes the significant
challenges that must yet be overcome.Comment: 239 pages, 11 figures, white paper from the LISA Consortium Waveform
Working Group, invited for submission to Living Reviews in Relativity,
updated with comments from communit
Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry
Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase
Black holes, gravitational waves and fundamental physics: a roadmap
The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions.
The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature.
The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
Terrestrial very-long-baseline atom interferometry: Workshop summary
This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
- …