650 research outputs found

    Rayleigh--Taylor turbulence in two dimensions

    Full text link
    The first consistent phenomenological theory for two and three dimensional Rayleigh--Taylor (RT) turbulence has recently been presented by Chertkov [Phys. Rev. Lett. {\bf 91} 115001 (2003)]. By means of direct numerical simulations we confirm the spatio/temporal prediction of the theory in two dimensions and explore the breakdown of the phenomenological description due to intermittency effects. We show that small-scale statistics of velocity and temperature follow Bolgiano-Obukhov scaling. At the level of global observables we show that the time-dependent Nusselt and Reynolds numbers scale as the square root of the Rayleigh number. These results point to the conclusion that Rayleigh-Taylor turbulence in two and three dimensions, thanks to the absence of boundaries, provides a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive ``ultimate state of thermal convection''.Comment: 4 pages, 5 figure

    Point-source scalar turbulence

    Full text link
    The statistics of a passive scalar randomly emitted from a point source is investigated analytically. Our attention has been focused on the two-point equal-time scalar correlation function. The latter is indeed easily related to the spectrum, a statistical indicator widely used both in experiments and in numerical simulations. The only source of inhomogeneity/anisotropy is in the injection mechanism, the advecting velocity here being statistically homogeneous and isotropic. Our main results can be summarized as follows. 1) For a very large velocity integral scale, a pure scaling behaviour in the distance between the two points emerges only if their separation is much smaller than their distance from the point source. 2) The value we have found for the scaling exponent suggests the existence of a direct cascade, in spite of the fact that here the forcing integral scale is formally set to zero. 3) The combined effect of a finite inertial-range extension and of inhomogeneities causes the emergence of subleading anisotropic corrections to the leading isotropic term, that we have quantified and discussed.Comment: 10 pages, 1 figure, submitted to Journal of Fluid Mechanic

    Scaling and universality in turbulent convection

    Full text link
    Anomalous correlation functions of the temperature field in two-dimensional turbulent convection are shown to be universal with respect to the choice of external sources. Moreover, they are equal to the anomalous correlations of the concentration field of a passive tracer advected by the convective flow itself. The statistics of velocity differences is found to be universal, self-similar and close to Gaussian. These results point to the conclusion that temperature intermittency in two-dimensional turbulent convection may be traced back to the existence of statistically preserved structures, as it is in passive scalar turbulence.Comment: 4 pages, 6 figure

    Industry 4.0 and manufacturing in the city: a possible vertical development

    Get PDF
    Deindustrialization has moved factories and jobs elsewhere, creating voids, not just space, in Western cities. The definition of the fourth industrial revolution incorporates the tendency of modern manufacturing to produce with innovative methodologies and systems, exploiting the ever-increasing development of ICT technologies and adapting it for factory applications. The production plant changes, both for the conformation of several systems that interact with each other and for a consequent occupation of the spaces. The article analyzes the evolutionary scenario of industrial production and describes the ways in which some activities can develop vertically, creating the conditions for a location in the city

    Bioturbation beyond Earth: potential, methods and models of astroichnology

    Get PDF
    Traces – burrows, borings, footprints – are important evidences of biological behaviour on Earth, yet they received relatively little attention in the field of astrobiology. This study aims to discuss the application of ichnology (i.e. the study of life activity traces) to the search for past and modern life beyond Earth (i.e. herein called Astroichnology)

    Coarse-grained description of a passive scalar

    Full text link
    The issue of the parameterization of small-scale dynamics is addressed in the context of passive-scalar turbulence. The basic idea of our strategy is to identify dynamical equations for the coarse-grained scalar dynamics starting from closed equations for two-point statistical indicators. With the aim of performing a fully-analytical study, the Kraichnan advection model is considered. The white-in-time character of the latter model indeed leads to closed equations for the equal-time scalar correlation functions. The classical closure problem however still arises if a standard filtering procedure is applied to those equations in the spirit of the large-eddy-simulation strategy. We show both how to perform exact closures and how to identify the corresponding coarse-grained scalar evolution.Comment: 22 pages; submitted to Journal of Turbulenc

    Passive scalar turbulence in high dimensions

    Full text link
    Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative regions of the Kraichnan advection model. The major result is the numerical assessment of the first-order 1/d1/d-expansion by M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev ({\it Phys. Rev. E}, {\bf 52}, 4924 (1995)) for the fourth-order scalar structure function in the limit of high dimensions dd's. %Two values of the velocity scaling exponent ξ\xi have been considered: %ξ=0.8\xi=0.8 and ξ=0.6\xi=0.6. In the first case, the perturbative regime %takes place at d30d\sim 30, while in the second at d25d\sim 25, %in agreement with the fact that the relevant small parameter %of the theory is 1/(d(2ξ))\propto 1/(d (2-\xi)). In addition to the perturbative results, the behavior of the anomaly for the sixth-order structure functions {\it vs} the velocity scaling exponent, ξ\xi, is investigated and the resulting behavior discussed.Comment: 4 pages, Latex, 4 figure
    corecore