1,694 research outputs found
Multi-Valley Superconductivity In Ion-Gated MoS2 Layers
Layers of transition metal dichalcogenides (TMDs) combine the enhanced
effects of correlations associated with the two-dimensional limit with
electrostatic control over their phase transitions by means of an electric
field. Several semiconducting TMDs, such as MoS, develop superconductivity
(SC) at their surface when doped with an electrostatic field, but the mechanism
is still debated. It is often assumed that Cooper pairs reside only in the two
electron pockets at the K/K' points of the Brillouin Zone. However,
experimental and theoretical results suggest that a multi-valley Fermi surface
(FS) is associated with the SC state, involving 6 electron pockets at the Q/Q'
points. Here, we perform low-temperature transport measurements in ion-gated
MoS flakes. We show that a fully multi-valley FS is associated with the SC
onset. The Q/Q' valleys fill for dopingcm, and the
SC transition does not appear until the Fermi level crosses both spin-orbit
split sub-bands Q and Q. The SC state is associated with the FS
connectivity and promoted by a Lifshitz transition due to the simultaneous
population of multiple electron pockets. This FS topology will serve as a
guideline in the quest for new superconductors.Comment: 12 pages, 7 figure
Silk reinforced with graphene or carbon nanotubes spun by spiders
Here, we report the production of silk incorporating graphene and carbon
nanotubes directly by spider spinning, after spraying spiders with the
corresponding aqueous dispersions. We observe a significant increment of the
mechanical properties with respect to the pristine silk, in terms of fracture
strength, Young's and toughness moduli. We measure a fracture strength up to
5.4 GPa, a Young's modulus up to 47.8 GPa and a toughness modulus up to 2.1
GPa, or 1567 J/g, which, to the best of our knowledge, is the highest reported
to date, even when compared to the current toughest knotted fibres. This
approach could be extended to other animals and plants and could lead to a new
class of bionic materials for ultimate applications
Algebraic Properties of BRST Coupled Doublets
We characterize the dependence on doublets of the cohomology of an arbitrary
nilpotent differential s (including BRST differentials and classical linearized
Slavnov-Taylor (ST) operators) in terms of the cohomology of the
doublets-independent component of s. All cohomologies are computed in the space
of local integrated formal power series. We drop the usual assumption that the
counting operator for the doublets commutes with s (decoupled doublets) and
discuss the general case where the counting operator does not commute with s
(coupled doublets). The results are purely algebraic and do not rely on
power-counting arguments.Comment: Some explanations enlarged, references adde
Initial Trajectory Assessment of the RAMSES Mission to (99942) Apophis
(99942) Apophis is a potentially hazardous asteroid that will closely
approach the Earth on April 13, 2029. Although the likelihood of an impact has
been ruled out, this close encounter represents a unique opportunity for
planetary science and defense. By investigating the physical and dynamical
changes induced by this interaction, valuable insights into asteroid cohesion,
strength, and internal structure can be obtained. In light of these
circumstances, a fast mission to Apophis holds great scientific importance and
potential for understanding potentially hazardous asteroids. To this aim, ESA
proposed the mission RAMSES (Rapid Apophis Mission for SEcurity and Safety) to
reach Apophis before its close encounter. In this context, the paper focuses on
the reachability analysis of (99942) Apophis, examining thousands of
trajectories departing from Earth and reaching the asteroid before the fly-by,
using a low-thrust spacecraft. A two-layer approach combining direct sequential
convex programming and an indirect method is employed for fast and reliable
trajectory optimization. The results reveal multiple feasible launch windows
and provide essential information for mission planning and system design
Initial Trajectory Assessment of a low-thrust option for the RAMSES Mission to (99942) Apophis
(99942) Apophis is a potentially hazardous asteroid that will closely approach the Earth on April 13, 2029. Although the likelihood of an impact has been ruled out, this close encounter represents a unique opportunity for planetary science and defense. By investigating the physical and dynamical changes induced by this interaction, valuable insights into asteroid cohesion, strength, and internal structure can be obtained. In light of these circumstances, a fast mission to Apophis holds great scientific importance and potential for understanding potentially hazardous asteroids. To this aim, ESA proposed the mission RAMSES (Rapid Apophis Mission for SEcurity and Safety) to reach Apophis before its close encounter. In this context, the paper focuses on the reachability analysis of (99942) Apophis, examining thousands of trajectories departing from Earth and reaching the asteroid before the fly-by, using a low-thrust spacecraft. A two-layer approach combining direct sequential convex programming and an indirect method is employed for fast and reliable trajectory optimization. The results reveal multiple feasible launch windows and provide essential information for mission planning and system design
High performance bilayer-graphene Terahertz detectors
We report bilayer-graphene field effect transistors operating as THz
broadband photodetectors based on plasma-waves excitation. By employing
wide-gate geometries or buried gate configurations, we achieve a responsivity
and a noise equivalent power in the 0.29-0.38 THz range, in photovoltage and photocurrent mode.
The potential of this technology for scalability to higher frequencies and the
development of flexible devices makes our approach competitive for a future
generation of THz detection systems.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter
- …