1,269 research outputs found

    Physics performances for Scalar Electrons, Scalar Muons and Scalar Neutrinos searches at CLIC

    Full text link
    The determination of scalar leptons and gauginos masses is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this talk we present results of a study of pair produced Scalar Electrons, Scalar Muons and Scalar Neutrinos searches in a Supersymmetric scenario at 3 TeV at CLIC. We present the performances on the lepton energy resolution and report the expected accuracies on the production cross sections and on the scalar leptons and gauginos masses.Comment: Linera Collider Workshop, LCWS11, 6 pages, 2 figures, 4 table

    Synchronous Retreat of Southeast Greenland\u27s Peripheral Glaciers

    Get PDF
    Recently, scientific attention has focused on estimating Greenland\u27s dynamic mass loss through changes to flow speeds, thickness, and length on its marine outlet glaciers. For the ice sheet outlet glaciers, dynamic mass loss has been found to be highly sensitive to changes in climate and individual glacier geometry. For the ice-sheet-independent marine glaciers around Greenland\u27s periphery, dynamic mass loss is presently overlooked. Here, we apply an open-source, automated method of measuring glacier length changes using satellite imagery, to produce highly detailed records of length changes for 135 peripheral marine glaciers in southeast Greenland. We find evidence for anomalous retreat across 56 glaciers coincident with elevated surface melt in 2016, with melt 22% above the 2013–2019 average. Our detailed observations resolve the widespread, rapid, and synchronous response of these independent marine glaciers to increased meltwater input in 2016, indicating that their dynamics may be more sensitive to atmospheric warming than currently thought

    Automated Detection of Marine Glacier Calving Fronts Using the 2-D Wavelet Transform Modulus Maxima Segmentation Method

    Get PDF
    Changes in the calving front position of marine-terminating glaciers strongly influence the mass balance of glaciers, ice caps, and ice sheets. At present, quantification of frontal position change primarily relies on time-consuming and subjective manual mapping techniques, limiting our ability to understand changes to glacier calving fronts. Here we describe a newly developed automated method of mapping glacier calving fronts in satellite imagery using observations from a representative sample of Greenland’s peripheral marine-terminating glaciers. Our method is adapted from the 2-D wavelet transform modulus maxima (WTMM) segmentation method, which has been used previously for image segmentation in biomedical and other applied science fields. The gradient-based method places edge detection lines along regions with the greatest intensity gradient in the image, such as the contrast between glacier ice and water or glacier ice and sea ice. The lines corresponding to the calving front are identified using thresholds for length, average gradient value, and orientation that minimize the misfit with respect to a manual validation data set. We demonstrate that the method is capable of mapping glacier calving fronts over a wide range of image conditions (light to intermediate cloud cover, dim or bright, mélange presence, etc.). With these time series, we are able to resolve subseasonal to multiyear temporal patterns as well as regional patterns in glacier frontal position change

    Fuel premixing module for gas turbine engine combustor

    Get PDF
    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module

    Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    Get PDF
    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within the framework of the CLIC_ILD_CDR detector concept

    Space weapons: The urgent debate

    Get PDF
    This article has been written by International Student/Young Pugwash (ISYP) in collaboration with the Space Generation Advisory Council in support of the UN Programme on Space Applications (SGAC). This follows on from our paper ‘Militarization of space: a youth perspective’ presented at the 52nd Pugwash Conference in La Jolla, 2002, which gave a summary of the reasons against space weapons. In that paper we included recommendations for ways forward, both for the international community at large, and Pugwash in particular. The current article aims to address one of our recommendations in that paper to ‘encourage high-level debate’ on this issue. To do this, we have been working together with a US Air Force General to develop a critical analysis of both the pros and cons of space weapons, for a nation considering deployment. By developing a balanced debate, we hope to set a framework for the discussion in which all sides can take part

    CATKE: a turbulent-kinetic-energy-based parameterization for ocean microturbulence with dynamic convective adjustment

    Full text link
    We describe CATKE, a parameterization for ocean microturbulence with scales between 1 and 100 meters. CATKE is a one-equation model that predicts diffusive turbulent vertical fluxes a prognostic turbulent kinetic energy (TKE) and a diagnostic mixing length that features a dynamic model for convective adjustment (CA). With its convective mixing length, CATKE predicts not just the depth range where microturbulence acts but also the timescale over which mixing occurs, an important aspect of turbulent convection not captured by convective adjustment schemes. As a result, CATKE can describe the competition between convection and other processes such as baroclinic restractification or biogeochemical production-destruction. We estimate CATKE's free parameters with a posteriori calibration to eighteen large eddy simulations of the ocean surface boundary layer, and validate CATKE against twelve additional large eddy simulations with stronger and weaker forcing than used during calibration. We find that a CATKE-parameterized single column model accurately predicts the depth structure of buoyancy and momentum at vertical resolutions between 2 and 16 meters and with time steps of 10-20 minutes. We propose directions for future model development, and future efforts to recalibrate CATKE's parameters against more comprehensive and realistic datasets.Comment: submitted to J. Adv. Model. Earth Sy., 24 pages, 8 figure

    Oceananigans.jl: A model that achieves breakthrough resolution, memory and energy efficiency in global ocean simulations

    Full text link
    Climate models must simulate hundreds of future scenarios for hundreds of years at coarse resolutions, and a handful of high-resolution decadal simulations to resolve localized extreme events. Using Oceananigans.jl, written from scratch in Julia, we report several achievements: First, a global ocean simulation with breakthrough horizontal resolution -- 488m -- reaching 15 simulated days per day (0.04 simulated years per day; SYPD). Second, Oceananigans simulates the global ocean at 488m with breakthrough memory efficiency on just 768 Nvidia A100 GPUs, a fraction of the resources available on current and upcoming exascale supercomputers. Third, and arguably most significant for climate modeling, Oceananigans achieves breakthrough energy efficiency reaching 0.95 SYPD at 1.7 km on 576 A100s and 9.9 SYPD at 10 km on 68 A100s -- the latter representing the highest horizontal resolutions employed by current IPCC-class ocean models. Routine climate simulations with 10 km ocean components are within reach
    • …
    corecore