8 research outputs found
Evaluation of Marine Brown Algae and Sponges from Brazil as Anticoagulant and Antiplatelet Products
The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders
Appraisal of Antiophidic Potential of Marine Sponges against Bothrops jararaca and Lachesis muta Venom
Snakebites are a health problem in many countries due to the high incidence of such accidents. Antivenom treatment has regularly been used for more than a century, however, this does not neutralize tissue damage and may even increase the severity and morbidity of accidents. Thus, it has been relevant to search for new strategies to improve antiserum therapy, and a variety of molecules from natural sources with antiophidian properties have been reported. In this paper, we analyzed the ability of ten extracts from marine sponges (Amphimedon viridis, Aplysina fulva, Chondrosia collectrix, Desmapsamma anchorata, Dysidea etheria, Hymeniacidon heliophila, Mycale angulosa, Petromica citrina, Polymastia janeirensis, and Tedania ignis) to inhibit the effects caused by Bothrops jararaca and Lachesis muta venom. All sponge extracts inhibited proteolysis and hemolysis induced by both snake venoms, except H. heliophila, which failed to inhibit any biological activity. P. citrina inhibited lethality, hemorrhage, plasma clotting, and hemolysis induced by B. jararaca or L. muta. Moreover, other sponges inhibited hemorrhage induced only by B. jararaca. We conclude that Brazilian sponges may be a useful aid in the treatment of snakebites caused by L. muta and B. jararaca and therefore have potential for the discovery of molecules with antiophidian properties
Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom
This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the B beta chain and BpirSP41 on both A alpha and B beta chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of similar to 3.5 mu g versus 20 mu g for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu2+ ion and specific serine protease inhibitors. In addition. BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs. (C) 2012 Elsevier Masson SAS. All rights reserved.CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP)FAPESP (Fundacao de Amparo Pesquisa do Estado de Sao Paulo)CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq
Potential Utilization of a Polysaccharide from the Marine Algae <i>Gayralia oxysperma</i>, as an Antivenom for Viperidae Snakebites
Worldwide, snakebites have serious implications for human health. The administration of antivenom is the official treatment used to reverse the toxic activities of envenomation. However, this therapy is not efficient to treat the local effects, leading to the amputation or deformity of affected limbs. As such, alternative treatments are needed. Here, we analyze the ability of a polysaccharide from the green marine alga Gayralia oxysperma (Go3) to inhibit the effects of venom from Bothrops jararaca and Lachesis muta. B. jararaca or L. muta venoms were incubated together with sulfated heterorhamnans from Go3, and the in vitro (coagulation, proteolytic, and hemolytic) and in vivo (hemorrhagic, myotoxic, edematogenic, and lethal) activities of venoms were assessed. Additionally, Go3 was injected before and after the injection of venoms, and the toxic activities were further tested. When incubated with the venoms, Go3 inhibited all activities, though results varied with different potencies. Moreover, Go3 neutralized hemorrhagic, myotoxic, and edematogenic activities when injected before or after injection with B. jararaca and L. muta venom. Go3 also blocked the coagulation of plasma in mice caused by the venoms in an ex vivo test. Therefore, Go3 has the potential to be used as antivenom for B. jararaca and L. muta bites, notably exhibiting higher efficacy on L. muta venom
Effect of Seaweed-Derived Fucoidans from <i>Undaria pinnatifida</i> and <i>Fucus vesiculosus</i> on Coagulant, Proteolytic, and Phospholipase A<sub>2</sub> Activities of Snake <i>Bothrops jararaca</i>, <i>B. jararacussu</i>, and <i>B. neuwiedi</i> Venom
Background: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. Methods: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. Results: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. Conclusion: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil
Evidence of caspase-mediated apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP