4 research outputs found
X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
We report experimental results on x-ray diffraction of quantum-state-selected
and strongly aligned ensembles of the prototypical asymmetric rotor molecule
2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments
demonstrate first steps toward a new approach to diffractive imaging of
distinct structures of individual, isolated gas-phase molecules. We confirm
several key ingredients of single molecule diffraction experiments: the
abilities to detect and count individual scattered x-ray photons in single shot
diffraction data, to deliver state-selected, e. g., structural-isomer-selected,
ensembles of molecules to the x-ray interaction volume, and to strongly align
the scattering molecules. Our approach, using ultrashort x-ray pulses, is
suitable to study ultrafast dynamics of isolated molecules.Comment: submitted to PR
Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions, matter under extreme conditions, ultrafast phase transitions and intense light-matter interactions. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples