22 research outputs found

    The low-affinity ATP binding site of the Escherichia coli SecA dimer is localized at the subunit interface

    Get PDF
    The homodimeric SecA protein is the ATP-dependent force generator in the Escherichia coli precursor protein translocation cascade. SecA contains two essential nucleotide binding sites (NBSs), i.e., NBS1 and NBS2 that bind ATP with high and low affinity, respectively. The photoactivatable bifunctional cross-linking agent 3'-arylazido-8-azidoadenosine 5'-triphosphate (diN3ATP) was used to investigate the spatial arrangement of the nucleotide binding sites of SecA. DiN3ATP is an authentic ATP analogue as it supports SecA-dependent precursor protein translocation and translocation ATPase. UV-induced photo-cross-linking of the diN3ATP-bound SecA results in the formation of stable dimeric species of SecA. D209N SecA, a mutant unable to bind nucleotides at NBS1, was also photo-cross-linked by diN3ATP, whereas no cross-linking occurred with the NBS2 mutant R509K SecA. We concluded that the low-affinity NBS2, which is located in the carboxyl-terminal half of SecA, is the site of cross-linking and that NBS2 binds nucleotides at or near the subunit interface of the SecA dimer.

    Dissecting complex transcriptional responses using pathway-level scores based on prior information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genomewide pattern of changes in mRNA expression measured using DNA microarrays is typically a complex superposition of the response of multiple regulatory pathways to changes in the environment of the cells. The use of prior information, either about the function of the protein encoded by each gene, or about the physical interactions between regulatory factors and the sequences controlling its expression, has emerged as a powerful approach for dissecting complex transcriptional responses.</p> <p>Results</p> <p>We review two different approaches for combining the noisy expression levels of multiple individual genes into robust pathway-level differential expression scores. The first is based on a comparison between the distribution of expression levels of genes within a predefined gene set and those of all other genes in the genome. The second starts from an estimate of the strength of genomewide regulatory network connectivities based on sequence information or direct measurements of protein-DNA interactions, and uses regression analysis to estimate the activity of gene regulatory pathways. The statistical methods used are explained in detail.</p> <p>Conclusion</p> <p>By avoiding the thresholding of individual genes, pathway-level analysis of differential expression based on prior information can be considerably more sensitive to subtle changes in gene expression than gene-level analysis. The methods are technically straightforward and yield results that are easily interpretable, both biologically and statistically.</p

    Reality beckons: metamodernist depthiness beyond panfictionality

    Get PDF
    It is often argued that postmodernism has been succeeded by a new dominant cultural logic. We conceive of this new logic as metamodernism. Whilst some twenty-first century texts still engage with and utilise postmodernist practices, they put these practices to new use. In this article, we investigate the metamodern usage of the typically postmodernist devices of metatextuality and ontological slippage in two genres: autofiction and true crime documentary. Specifically, we analyse Ruth Ozeki’s A Tale for the Time Being and the Netflix mini-series The Keepers, demonstrating that forms of fictionalisation, metafictionality and ontological blurring between fiction and reality have been repurposed. We argue that, rather than expand the scope of fiction, overriding reality, the metamodernist repurposing of postmodernist textual strategies generates a kind of ‘reality-effect’

    Transcriptional Response of Saccharomyces cerevisiae to the Plasma Membrane-Perturbing Compound Chitosan

    No full text
    Chitosan is a plasma membrane-perturbing compound consisting of linear chains of β-1,4-linked glucosamine residues, which at acidic pHs become positively charged. It is extensively used as an antimicrobial compound, yet its mode of action is still unresolved. Chitosan strongly affected the growth of the yeast Saccharomyces cerevisiae, the food spoilage yeast Zygosaccharomyces bailii, and two human-pathogenic yeasts, Candida albicans and Candida glabrata. Microarray analysis of yeast cells treated with sublethal concentrations of chitosan revealed induction of the environmental stress response and three more major transcriptional responses. The first was a rapid and stable Cin5p-mediated response. Cin5p/Yap4p is a transcription factor involved in various stress responses. Deletion of CIN5 led to increased chitosan sensitivity. The second was a Crz1p-mediated response, which is delayed compared to the Cin5p response. Crz1p is a transcription factor of the calcineurin pathway. Cells deleted for CRZ1 or treated with the calcineurin inhibitor FK506 became hypersensitive to chitosan, supporting the notion that the Crz1p-controlled response offers protection against chitosan. The third was a strong Rlm1p-mediated response which ran parallel in time with the Crz1p-regulated response. Rlm1p is a transcription factor of the cell wall integrity pathway, which is activated by cell wall stress. Importantly, chitosan-treated cells became more resistant to β-1,3-glucanase, which is a well-known response to cell wall stress. We propose that the transcriptional response to chitosan may be representative of other plasma membrane-perturbing compounds

    Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan

    No full text
    Global fitness analysis makes use of a genomic library of tagged deletion strains. We used this approach to study the effect of chitosan, which causes plasma membrane stress. The data were analyzed using T-profiler, which was based on determining the sensitivities of groups of deletion strains to chitosan, as defined by Gene Ontology (GO) and by genomic synthetic lethality screens, in combination with t statistics. The chitosan-hypersensitive groups included a group of deletion strains characterized by a defective HOG (high-osmolarity glycerol) signaling pathway, indicating that the HOG pathway is required for counteracting chitosan-induced stress. Consistent with this, activation of this pathway in wild-type cells by hypertonic conditions offered partial protection against chitosan, whereas hypotonic conditions sensitized the cells to chitosan. Other chitosan-hypersensitive groups were defective in RNA synthesis and processing, actin cytoskeleton organization, protein N-glycosylation, ergosterol synthesis, endocytosis, or cell wall formation, predicting that these cellular functions buffer the cell against the deleterious effect of chitosan. These predictions were supported by showing that tunicamycin, miconazole, and staurosporine (which target protein N-glycosylation, ergosterol synthesis, and the cell wall integrity pathway, respectively) sensitized Saccharomyces cerevisiae cells to chitosan. Intriguingly, the GO-defined group of deletion strains belonging to the “cytosolic large ribosomal subunit” was more resistant to chitosan. We propose that global fitness analysis of yeast in combination with T-profiler is a powerful tool to identify specific cellular processes and pathways that are required for survival under stress conditions
    corecore