2 research outputs found

    Cytochrome bd-Dependent Bioenergetics and Antinitrosative Defenses in Salmonella Pathogenesis

    No full text
    In the course of an infection, Salmonella enterica occupies diverse anatomical sites with various concentrations of oxygen (O2) and nitric oxide (NO). These diatomic gases compete for binding to catalytic metal groups of quinol oxidases. Enterobacteriaceae express two evolutionarily distinct classes of quinol oxidases that differ in affinity for O2 and NO as well as stoichiometry of H+ translocated across the cytoplasmic membrane. The investigations presented here show that the dual function of bacterial cytochrome bd in bioenergetics and antinitrosative defense enhances Salmonella virulence. The high affinity of cytochrome bd for O2 optimizes respiratory rates in hypoxic cultures, and thus, this quinol oxidase maximizes bacterial growth under O2-limiting conditions. Our investigations also indicate that cytochrome bd, rather than cytochrome bo, is an intrinsic component of the adaptive antinitrosative toolbox of Salmonella. Accordingly, induction of cytochrome bd helps Salmonella grow and respire in the presence of inhibitory NO. The combined antinitrosative defenses of cytochrome bd and the flavohemoglobin Hmp account for a great part of the adaptations that help Salmonella recover from the antimicrobial activity of NO. Moreover, the antinitrosative defenses of cytochrome bd and flavohemoglobin Hmp synergize to promote Salmonella growth in systemic tissues. Collectively, our investigations indicate that cytochrome bd is a critical means by which Salmonella resists the nitrosative stress that is engendered in the innate response of mammalian hosts while it concomitantly allows for proper O2 utilization in tissue hypoxia

    Salmonella Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress

    No full text
    The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies. Guanosine tetraphosphate activates the transcription of valine biosynthetic genes, thereby reestablishing branched-chain amino acid biosynthesis that enables the translation of the NO-consuming flavohemoglobin Hmp. Guanosine tetraphosphate synthesized by RelA protects salmonellae from the metabolic stress inflicted by reactive nitrogen species generated in the mammalian host response. This research illustrates the importance of nucleotide metabolism in the adaptation of salmonellae to the nutritional stress imposed by NO released in the innate host response
    corecore