15,334 research outputs found

    Critical properties of an aperiodic model for interacting polymers

    Full text link
    We investigate the effects of aperiodic interactions on the critical behavior of an interacting two-polymer model on hierarchical lattices (equivalent to the Migadal-Kadanoff approximation for the model on Bravais lattices), via renormalization-group and tranfer-matrix calculations. The exact renormalization-group recursion relations always present a symmetric fixed point, associated with the critical behavior of the underlying uniform model. If the aperiodic interactions, defined by s ubstitution rules, lead to relevant geometric fluctuations, this fixed point becomes fully unstable, giving rise to novel attractors of different nature. We present an explicit example in which this new attractor is a two-cycle, with critical indices different from the uniform model. In case of the four-letter Rudin-Shapiro substitution rule, we find a surprising closed curve whose points are attractors of period two, associated with a marginal operator. Nevertheless, a scaling analysis indicates that this attractor may lead to a new critical universality class. In order to provide an independent confirmation of the scaling results, we turn to a direct thermodynamic calculation of the specific-heat exponent. The thermodynamic free energy is obtained from a transfer matrix formalism, which had been previously introduced for spin systems, and is now extended to the two-polymer model with aperiodic interactions.Comment: 19 pages, 6 eps figures, to appear in J. Phys A: Math. Ge

    Gravitomagnetic Moments of the Fundamental Fields

    Full text link
    The quadratic form of the Dirac equation in a Riemann spacetime yields a gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also found for the interaction of a vector field with curvature. It is shown that the Dirac equation in a curved background can be obtained as the square--root of the corresponding vector field equation only if the gravitational gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now restricted to fields of spin 0, 1/2 and 1 -- some references adde

    Effects of LatticeQCD EoS and Continuous Emission on Some ObseErvables

    Full text link
    Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well as v2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations.Comment: 6 pages, 10 figures, prepared for Workshop on Particle Correlations and Fentoscopy, Kromeriz (Czech Republic), Aug. 15-17,200

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure

    Avaliação de híbridos interespecíficos de Elaeis guineensis x Elaeis oleifera.

    Get PDF
    bitstream/item/57579/1/CPATU-PA121.pd

    Transition from Knudsen to molecular diffusion in activity of absorbing irregular interfaces

    Full text link
    We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical predictions for Laplacian transport in irregular geometries. Finally, we show that all these features can be qualitatively described in terms of a simple random-walk model of the diffusion process.Comment: 4 pages, 4 figure
    corecore